欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

Spark函数讲解:coalesce

  对RDD中的分区重新进行合并。

函数原型

def coalesce(numPartitions: Int, shuffle: Boolean = false)
    (implicit ord: Ordering[T] = null): RDD[T]

  返回一个新的RDD,且该RDD的分区个数等于numPartitions个数。如果shuffle设置为true,则会进行shuffle。

实例

/**
 * User: 过往记忆
 * Date: 15-03-09
 * Time: 上午06:30
 * bolg: 
 * 本文地址:/archives/1279
 * 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
 * 过往记忆博客微信公共帐号:iteblog_hadoop
 */
scala> var data = sc.parallelize(List(1,2,3,4))
data: org.apache.spark.rdd.RDD[Int] = 
    ParallelCollectionRDD[45] at parallelize at <console>:12

scala> data.partitions.length
res68: Int = 30

scala> val result = data.coalesce(2, false)
result: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[57] at coalesce at <console>:14

scala> result.partitions.length
res77: Int = 2

scala> result.toDebugString
res75: String = 
(2) CoalescedRDD[57] at coalesce at <console>:14 []
 |  ParallelCollectionRDD[45] at parallelize at <console>:12 []

scala> val result1 = data.coalesce(2, true)
result1: org.apache.spark.rdd.RDD[Int] = MappedRDD[61] at coalesce at <console>:14

scala> result1.toDebugString
res76: String = 
(2) MappedRDD[61] at coalesce at <console>:14 []
 |  CoalescedRDD[60] at coalesce at <console>:14 []
 |  ShuffledRDD[59] at coalesce at <console>:14 []
 +-(30) MapPartitionsRDD[58] at coalesce at <console>:14 []
    |   ParallelCollectionRDD[45] at parallelize at <console>:12 []

  从上面可以看出shuffle为false的时候并不进行shuffle操作;而为true的时候会进行shuffle操作。RDD.partitions.length可以获取相关RDD的分区数。

本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Spark函数讲解:coalesce】(https://www.iteblog.com/archives/1279.html)
喜欢 (5)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!
(1)个小伙伴在吐槽
  1. 想问下大神,coalesce参数为true时,是如何shuffle的?

    yanmin2019-09-20 02:35 回复