使用用户设置好的聚合函数对每个Key中的Value进行组合(combine)。可以将输入类型为RDD[(K, V)]转成成RDD[(K, C)]。
函数原型
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C) : RDD[(K, C)] def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)] def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true, serializer: Serializer = null): RDD[(K, C)]
第一个和第二个函数都是基于第三个函数实现的,使用的是HashPartitioner,Serializer为null。而第三个函数我们可以指定分区,如果需要使用Serializer的话也可以指定。combineByKey函数比较重要,我们熟悉地诸如aggregateByKey、foldByKey、reduceByKey等函数都是基于该函数实现的。默认情况会在Map端进行组合操作。
实例
/** * User: 过往记忆 * Date: 15-03-19 * Time: 上午08:24 * bolg: * 本文地址:/archives/1291 * 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货 * 过往记忆博客微信公共帐号:iteblog_hadoop */ scala> val data = sc.parallelize(List((1, "www"), (1, "iteblog"), (1, "com"), (2, "bbs"), (2, "iteblog"), (2, "com"), (3, "good"))) data: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[15] at parallelize at <console>:12 scala> val result = data.combineByKey(List(_), (x: List [String], y: String) => y :: x, (x: List[String], y: List[String]) => x ::: y) result: org.apache.spark.rdd.RDD[(Int, List[String])] = ShuffledRDD[19] at combineByKey at <console>:14 scala> result.collect res20: Array[(Int, List[String])] = Array((1,List(www, iteblog, com)), (2,List(bbs, iteblog, com)), (3,List(good))) scala> val data = sc.parallelize(List(("iteblog", 1), ("bbs", 1), ("iteblog", 3))) data: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[24] at parallelize at <console>:12 scala> val result = data.combineByKey(x => x, (x: Int, y:Int) => x + y, (x:Int, y: Int) => x + y) result: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[25] at combineByKey at <console>:14 scala> result.collect res27: Array[(String, Int)] = Array((iteblog,4), (bbs,1))
第二个例子其实就是计算单词的个数,事实上,reduceByKey函数就是类似的计算。(x:Int, y: Int) => x + y就是我们传进reduceByKey函数的参数。
本博客文章除特别声明,全部都是原创!原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Spark函数讲解:combineByKey】(https://www.iteblog.com/archives/1291.html)