欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

Apache Flink vs Apache Spark

  我们是否还需要另外一个新的数据处理引擎?当我第一次听到Flink的时候这是我是非常怀疑的。在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。自从Apache Spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀疑态度。

  不过因为好奇,我花费了数个星期在尝试了解Flink。一开始仔细看了Flink的几个例子,感觉和Spark非常类似,心理就倾向于认为Flink又是一个模仿Spark的框架。但是随着了解的深入,这些API体现了一些Flink的新奇的思路,这些思路还是和Spark有着比较明显的区别的。我对这些思路有些着迷了,所以花费了更多的时间在这上面。

  Flink中的很多思路,例如内存管理,dataset API都已经出现在Spark中并且已经证明 这些思路是非常靠谱的。所以,深入了解Flink也许可以帮助我们分布式数据处理的未来之路是怎样的。

  在后面的文章里,我会把自己作为一个Spark开发者对Flink的第一感受写出来。因为我已经在Spark上干了2年多了,但是只在Flink上接触了2到3周,所以必然存在一些bias,所以大家也带着怀疑和批判的角度来看这篇文章吧。

Apache Flink是什么

  Flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理。这个目标看起来和Spark和类似。没错,Flink也在尝试解决Spark在解决的问题。这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用。所以,Flink和Spark的目标差别并不大,他们最主要的区别在于实现的细节,后面我会重点从不同的角度对比这两者。

Apache Spark vs Apache Flink

1、抽象 Abstraction

  Spark中,对于批处理我们有RDD,对于流式,我们有DStream,不过内部实际还是RDD.所以所有的数据表示本质上还是RDD抽象。后面我会重点从不同的角度对比这两者。在Flink中,对于批处理有DataSet,对于流式我们有DataStreams。看起来和Spark类似,他们的不同点在于:

  (一)DataSet在运行时是表现为运行计划(runtime plans)的

  在Spark中,RDD在运行时是表现为java objects的。通过引入Tungsten,这块有了些许的改变。但是在Flink中是被表现为logical plan(逻辑计划)的,听起来很熟悉?没错,就是类似于Spark中的dataframes。所以在Flink中你使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在Spark RDD中就没有了这块的优化了。
  Flink中的Dataset,对标Spark中的Dataframe,在运行前会经过优化。在Spark 1.6,dataset API已经被引入Spark了,也许最终会取代RDD 抽象。

  (二)Dataset和DataStream是独立的API

  在Spark中,所有不同的API,例如DStream,Dataframe都是基于RDD抽象的。但是在Flink中,Dataset和DataStream是同一个公用的引擎之上两个独立的抽象。所以你不能把这两者的行为合并在一起操作,当然,Flink社区目前在朝这个方向努力(https://issues.apache.org/jira/browse/Flink-2320),但是目前还不能轻易断言最后的结果。

2、内存管理

  一直到1.5版本,Spark都是试用java的内存管理来做数据缓存,明显很容易导致OOM或者gc。所以从1.5开始,Spark开始转向精确的控制内存的使用,这就是tungsten项目了。

  而Flink从第一天开始就坚持自己控制内存试用。这个也是启发了Spark走这条路的原因之一。Flink除了把数据存在自己管理的内存以外,还直接操作二进制数据。在Spark中,从1.5开始,所有的dataframe操作都是直接作用在tungsten的二进制数据上。

3、语言实现

  Spark是用scala来实现的,它提供了Java,Python和R的编程接口。Flink是java实现的,当然同样提供了Scala API
所以从语言的角度来看,Spark要更丰富一些。因为我已经转移到scala很久了,所以不太清楚这两者的java api实现情况。

4、API

  Spark和Flink都在模仿scala的collection API.所以从表面看起来,两者都很类似。下面是分别用RDD和DataSet API实现的word count

// Spark wordcount
object WordCount {

  def main(args: Array[String]) {
    val env = new SparkContext("local","wordCount")
    val data = List("hi","how are you","hi")
    val dataSet = env.parallelize(data)
    val words = dataSet.flatMap(value => value.split("\\s+"))
    val mappedWords = words.map(value => (value,1))
    val sum = mappedWords.reduceByKey(_+_)
    println(sum.collect())
  }
}

// Flink wordcount
object WordCount {

def main(args: Array[String]) {
  val env = ExecutionEnvironment.getExecutionEnvironment
  val data = List("hi","how are you","hi")
  val dataSet = env.fromCollection(data)
  val words = dataSet.flatMap(value => value.split("\\s+"))
  val mappedWords = words.map(value => (value,1))
  val grouped = mappedWords.groupBy(0)
  val sum = grouped.sum(1)
  println(sum.collect())
 }
}

  不知道是偶然还是故意的,API都长得很像,这样很方便开发者从一个引擎切换到另外一个引擎。我感觉以后这种Collection API会成为写data pipeline的标配。

5、Steaming

  Spark把streaming看成是更快的批处理,而Flink把批处理看成streaming的special case。这里面的思路决定了各自的方向,其中两者的差异点有如下这些:

实时 vs 近实时的角度

  Flink提供了基于每个事件的流式处理机制,所以可以被认为是一个真正的流式计算。它非常像storm的model。
而Spark,不是基于事件的粒度,而是用小批量来模拟流式,也就是多个事件的集合。所以Spark被认为是近实时的处理系统。

  Spark streaming 是更快的批处理,而Flink Batch是有限数据的流式计算。
虽然大部分应用对准实时是可以接受的,但是也还是有很多应用需要event level的流式计算。这些应用更愿意选择storm而非Spark streaming,现在,Flink也许是一个更好的选择。

流式计算和批处理计算的表示

  Spark对于批处理和流式计算,都是用的相同的抽象:RDD,这样很方便这两种计算合并起来表示。而Flink这两者分为了DataSet和DataStream,相比Spark,这个设计算是一个糟糕的设计。

对 windowing 的支持

  因为Spark的小批量机制,Spark对于windowing的支持非常有限。只能基于process time,且只能对batches来做window。而Flink对window的支持非常到位,且Flink对windowing API的支持是相当给力的,允许基于process time,data time,record 来做windowing。我不太确定Spark是否能引入这些API,不过到目前为止,Flink的windowing支持是要比Spark好的。Steaming这部分Flink胜

6、SQL interface

  目前Spark-sql是Spark里面最活跃的组件之一,Spark提供了类似Hive的sql和Dataframe这种DSL来查询结构化数据,API很成熟,在流式计算中使用很广,预计在流式计算中也会发展得很快。至于Flink,到目前为止,Flink Table API只支持类似DataFrame这种DSL,并且还是处于beta状态,社区有计划增加SQL 的interface,但是目前还不确定什么时候才能在框架中用上。所以这个部分,Spark胜出。

7、外部数据源的整合

  Spark的数据源 API是整个框架中最好的,支持的数据源包括NoSql db,parquet,ORC等,并且支持一些高级的操作,例如predicate push down。Flink目前还依赖map/reduce InputFormat来做数据源聚合。这一场Spark胜

8、Iterative processing

  Spark对机器学习的支持较好,因为可以在Spark中利用内存cache来加速机器学习算法。
但是大部分机器学习算法其实是一个有环的数据流,但是在Spark中,实际是用无环图来表示的,一般的分布式处理引擎都是不鼓励试用有环图的。但是Flink这里又有点不一样,Flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率。这一点Flink胜出。

9、Stream as platform vs Batch as Platform

  Spark诞生在Map/Reduce的时代,数据都是以文件的形式保存在磁盘中,这样非常方便做容错处理。Flink把纯流式数据计算引入大数据时代,无疑给业界带来了一股清新的空气。这个idea非常类似akka-streams这种。成熟度目前的确有一部分吃螃蟹的用户已经在生产环境中使用Flink了,不过从我的眼光来看,Flink还在发展中,还需要时间来成熟。

结论

  目前Spark相比Flink是一个更为成熟的计算框架,但是Flink的很多思路很不错,Spark社区也意识到了这一点,并且逐渐在采用Flink中的好的设计思路,所以学习一下Flink能让你了解一下Streaming这方面的更迷人的思路。

  作者:billen pan
  链接:https://www.zhihu.com/question/30151872/answer/82554774
  来源:知乎
  著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Apache Flink vs Apache Spark】(https://www.iteblog.com/archives/1624.html)
喜欢 (42)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!