欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

Apache YARN各组件功能概述

Apache YARN是将之前Hadoop 1.x的 JobTracker 功能分别拆到不同的组件里面了,每个组件分别负责不同的功能。在Hadoop 1.x中, JobTracker 负责管理集群的资源,作业调度以及作业监控;YARN把这些功能分别拆到ResourceManager 和 ApplicationMaster 中了。而之前的TaskTracker被NodeManager替代。下面分别介绍YAEN的各个组件的作用。

YARN components
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

ResourceManager

每个Hadoop集群只会有一个ResourceManager(如果是HA的话会存在两个,但是有且只有一个处于active状态),它负责管理整个集群的计算资源,并将这些资源分别给应用程序。ResourceManager 内部主要有两个组件:

  • Scheduler:这个组件完全是插拔式的,用户可以根据自己的需求实现不同的调度器,目前YARN提供了FIFO、容量以及公平调度器。这个组件的唯一功能就是给提交到集群的应用程序分配资源,并且对可用的资源和运行的队列进行限制。Scheduler并不对作业进行监控;
  • ApplicationsManager (AsM):这个组件用于管理整个集群应用程序的application masters,负责接收应用程序的提交;为application master启动提供资源;监控应用程序的运行进度以及在应用程序出现故障时重启它。

NodeManager

NodeManager是YARN中每个节点上的代理,它管理Hadoop集群中单个计算节点,根据相关的设置来启动容器的。NodeManager会定期向ResourceManager发送心跳信息来更新其健康状态。同时其也会监督Container的生命周期管理,监控每个Container的资源使用(内存、CPU等)情况,追踪节点健康状况,管理日志和不同应用程序用到的附属服务(auxiliary service)。

ApplicationMaster

ApplicationMaster是应用程序级别的,每个ApplicationMaster管理运行在YARN上的应用程序。YARN 将 ApplicationMaster看做是第三方组件,ApplicationMaster负责和ResourceManager scheduler协商资源,并且和NodeManager通信来运行相应的task。ResourceManager 为 ApplicationMaster 分配容器,这些容器将会用来运行task。ApplicationMaster 也会追踪应用程序的状态,监控容器的运行进度。当容器运行完成, ApplicationMaster 将会向 ResourceManager 注销这个容器;如果是整个作业运行完成,其也会向 ResourceManager 注销自己,这样这些资源就可以分配给其他的应用程序使用了。

Container

Container是与特定节点绑定的,其包含了内存、CPU磁盘等逻辑资源。不过在现在的容器实现中,这些资源只包括了内存和CPU。容器是由 ResourceManager scheduler 服务动态分配的资源构成。容器授予 ApplicationMaster 使用特定主机的特定数量资源的权限。ApplicationMaster 也是在容器中运行的,其在应用程序分配的第一个容器中运行。

作业的完整运行如下所示:

The YARN architecture
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop
本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Apache YARN各组件功能概述】(https://www.iteblog.com/archives/1755.html)
喜欢 (31)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!