欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

【福利】本周免费送出五本《深入浅出深度学习:原理剖析与Python实践》

关注 iteblog_hadoop 公众号并在这篇文章里面文末评论区留言(认真写评论,增加上榜的机会)。留言点赞数排名前5名的粉丝,各免费赠送一本《深入浅出深度学习:原理剖析与Python实践》,活动截止至08月22日18:00。

这篇文章评论区留言才有资格参加送书活动http://mp.weixin.qq.com/s/R6mqHuaNK819aLrE4tit6A

大数据之路:阿里巴巴大数据实践
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

编辑推荐

本书的特色在于取舍明确,一切无助于迅速理解深度学习精髓的内容全被摒弃了,并着重阐述了技术上的重点和难点;表达上深入浅出:即便是从未接触过AI知识的人,也能从作者简明清晰的表述中,一窥深度学习的殿堂。

对任何一位想成为AI/深度学习领域工程师的读者来说,《深入浅出深度学习:原理剖析与Python实践》能帮你迅速打开AI的大门,并成长为一名合格的AI工程师。

内容介绍

《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和最优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。

《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的最后都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。最后,理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码(https://github.com/innovation-cat/DeepLearningBook)。

作者简介

黄安埠,2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。

活动规则

【1】关注 iteblog_hadoop 公众号,并在评论区留言获点赞数最高前5名将赠送;《深入浅出深度学习:原理剖析与Python实践》1本,共送出5本;
【2】活动时间:即日起至08月22日18:00点;
【3】活动结束后,收到中奖通知的用户请在公众号私信:微信号 + 姓名 + 地址+ 电话 + 邮编;
【4】本活动解释权归Hadoop技术博文所有。

本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【【福利】本周免费送出五本《深入浅出深度学习:原理剖析与Python实践》】(https://www.iteblog.com/archives/2234.html)
喜欢 (4)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!