欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

[电子书]Machine Learning Algorithms PDF下载

本书于2017-07由Packt Publishing出版,作者Giuseppe Bonaccorso,全书580页。

Scala_and_Spark_for_Big_Data_Analytics_iteblog
关注大数据猿(bigdata_ai)公众号及时获取最新大数据相关电子书、资讯等

通过本书你将学到以下知识

  • Acquaint yourself with important elements of Machine Learning
  • Understand the feature selection and feature engineering process
  • Assess performance and error trade-offs for Linear Regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector machines
  • Implement clusters to a dataset
  • Explore the concept of Natural Processing Language and Recommendation Systems
  • Create a ML architecture from scratch.
Machine_Learning_Algorithms_iteblog.png
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

本书的章节

  1. A GENTLE INTRODUCTION TO MACHINE LEARNING
  2. IMPORTANT ELEMENTS IN MACHINE LEARNING
  3. FEATURE SELECTION AND FEATURE ENGINEERING
  4. LINEAR REGRESSION
  5. LOGISTIC REGRESSION
  6. NAIVE BAYES
  7. SUPPORT VECTOR MACHINES
  8. DECISION TREES AND ENSEMBLE LEARNING
  9. CLUSTERING FUNDAMENTALS
  10. HIERARCHICAL CLUSTERING
  11. INTRODUCTION TO RECOMMENDATION SYSTEMS
  12. INTRODUCTION TO NATURAL LANGUAGE PROCESSING
  13. TOPIC MODELING AND SENTIMENT ANALYSIS IN NLP
  14. A BRIEF INTRODUCTION TO DEEP LEARNING AND TENSORFLOW
  15. CREATING A MACHINE LEARNING ARCHITECTURE

下载地址

提供了PDF、azw3 以及 epub 三种格式的下载。

点击进入下载

本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【[电子书]Machine Learning Algorithms PDF下载】(https://www.iteblog.com/archives/2245.html)
喜欢 (14)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!