欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

[电子书]Deep Learning with Theano PDF下载

本书于2017-07由Packt Publishing出版,作者Christopher Bourez,全书440页。

Scala_and_Spark_for_Big_Data_Analytics_iteblog
关注大数据猿(bigdata_ai)公众号及时获取最新大数据相关电子书、资讯等

通过本书你将学到以下知识

  • Get familiar with Theano and deep learning
  • Provide examples in supervised, unsupervised, generative, or reinforcement learning.
  • Discover the main principles for designing efficient deep learning nets: convolutions, residual connections, and recurrent connections.
  • Use Theano on real-world computer vision datasets, such as for digit classification and image classification.
  • Extend the use of Theano to natural language processing tasks, for chatbots or machine translation
  • Cover artificial intelligence-driven strategies to enable a robot to solve games or learn from an environment
  • Generate synthetic data that looks real with generative modeling
  • Become familiar with Lasagne and Keras, two frameworks built on top of Theano
Deep Learning with Theano
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

本书的章节

  1. THEANO BASICS
  2. CLASSIFYING HANDWRITTEN DIGITS WITH A FEEDFORWARD NETWORK
  3. ENCODING WORD INTO VECTOR
  4. GENERATING TEXT WITH A RECURRENT NEURAL NET
  5. ANALYZING SENTIMENT WITH A BIDIRECTIONAL LSTM
  6. LOCATING WITH SPATIAL TRANSFORMER NETWORKS
  7. CLASSIFYING IMAGES WITH RESIDUAL NETWORKS
  8. TRANSLATING AND EXPLAINING WITH ENCODING – DECODING NETWORKS
  9. SELECTING RELEVANT INPUTS OR MEMORIES WITH THE MECHANISM OF ATTENTION
  10. PREDICTING TIMES SEQUENCES WITH ADVANCED RNN
  11. LEARNING FROM THE ENVIRONMENT WITH REINFORCEMENT
  12. LEARNING FEATURES WITH UNSUPERVISED GENERATIVE NETWORKS
  13. EXTENDING DEEP LEARNING WITH THEANO

下载地址

提供了PDF、azw3 以及 epub 三种格式的下载。

点击进入下载

本博客文章除特别声明,全部都是原创!
原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【[电子书]Deep Learning with Theano PDF下载】(https://www.iteblog.com/archives/2246.html)
喜欢 (8)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!