在 《HBase Rowkey 设计指南》 文章中,我们介绍了避免数据热点的三种比较常见方法:
- 加盐 - Salting
- 哈希 - Hashing
- 反转 - Reversing
其中在加盐(Salting)的方法里面是这么描述的:给 Rowkey 分配一个随机前缀以使得它和之前排序不同。但是在 Rowkey 前面加了随机前缀,那么我们怎么将这些数据读出来呢?我将分三篇文章来介绍如何读取加盐之后的表,其中每篇文章提供一种方法,主要包括:
- 使用协处理器读取加盐的表
- 使用 Spark 读取加盐的表
- 使用 MapReduce 读取加盐的表
关于协处理器的入门及实战,请参见这里。本文使用的各组件版本:hadoop-2.7.7,hbase-2.0.4,jdk1.8.0_201。
测试数据生成
在介绍如何查询数据之前,我们先创建一张名为 iteblog 的 HBase 表,用于测试。为了数据均匀和介绍的方便,这里使用了预分区,并设置了27个分区,如下:
hbase(main):002:0> create 'iteblog', 'f', SPLITS => ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] 0 row(s) in 2.4880 seconds
然后我们使用下面方法生成了1000000条测试数据。RowKey 的形式为 UID + 当前数据生成时间戳;由于 UID 的长度为4,所以1000000条数据会存在大量的 UID 一样的数据,所以我们使用加盐方法将这些数据均匀分散到上述27个 Region 里面(注意,其实第一个 Region 其实没数据)。具体代码如下:
package com.iteblog.data; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HConstants; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.*; import org.apache.hadoop.hbase.util.Bytes; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Random; import java.util.UUID; public class HBaseDataGenerator { private static byte[] FAMILY = "f".getBytes(); private static byte[] QUALIFIER_UUID = "uuid".getBytes(); private static byte[] QUALIFIER_AGE = "age".getBytes(); private static char generateLetter() { return (char) (Math.random() * 26 + 'A'); } private static long generateUid(int n) { return (long) (Math.random() * 9 * Math.pow(10, n - 1)) + (long) Math.pow(10, n - 1); } public static void main(String[] args) throws IOException { BufferedMutatorParams bmp = new BufferedMutatorParams(TableName.valueOf("iteblog")); bmp.writeBufferSize(1024 * 1024 * 24); Configuration conf = HBaseConfiguration.create(); conf.set(HConstants.ZOOKEEPER_QUORUM, "https://www.iteblog.com:2181"); Connection connection = ConnectionFactory.createConnection(conf); BufferedMutator bufferedMutator = connection.getBufferedMutator(bmp); int BATCH_SIZE = 1000; int COUNTS = 1000000; int count = 0; List<Put> putList = new ArrayList<>(); for (int i = 0; i < COUNTS; i++) { String rowKey = generateLetter() + "-" + generateUid(4) + "-" + System.currentTimeMillis(); Put put = new Put(Bytes.toBytes(rowKey)); byte[] uuidBytes = UUID.randomUUID().toString().substring(0, 23).getBytes(); put.addColumn(FAMILY, QUALIFIER_UUID, uuidBytes); put.addColumn(FAMILY, QUALIFIER_AGE, Bytes.toBytes("" + new Random().nextInt(100))); putList.add(put); count++; if (count % BATCH_SIZE == 0) { bufferedMutator.mutate(putList); bufferedMutator.flush(); putList.clear(); System.out.println(count); } } if (putList.size() > 0) { bufferedMutator.mutate(putList); bufferedMutator.flush(); putList.clear(); } } }
运行完上面代码之后,会生成1000000条数据(注意,这里其实不严谨,因为 Rowkey 设计问题,可能会导致重复的 Rowkey 生成,所以实际情况下可能没有1000000条数据。)。我们limit 10条数据看下长成什么样:
hbase(main):001:0> scan 'iteblog', {'LIMIT'=>10} ROW COLUMN+CELL A-1000-1550572395399 column=f:age, timestamp=1549091990253, value=54 A-1000-1550572395399 column=f:uuid, timestamp=1549091990253, value=e9b10a9f-1218-43fd-bd01 A-1000-1550572413799 column=f:age, timestamp=1549092008575, value=4 A-1000-1550572413799 column=f:uuid, timestamp=1549092008575, value=181aa91e-5f1d-454c-959c A-1000-1550572414761 column=f:age, timestamp=1549092009531, value=33 A-1000-1550572414761 column=f:uuid, timestamp=1549092009531, value=19aad8d3-621a-473c-8f9f A-1001-1550572394570 column=f:age, timestamp=1549091989341, value=64 A-1001-1550572394570 column=f:uuid, timestamp=1549091989341, value=c6712a0d-3793-46d5-865b A-1001-1550572405337 column=f:age, timestamp=1549092000108, value=96 A-1001-1550572405337 column=f:uuid, timestamp=1549092000108, value=4bf05d10-bb4d-43e3-9957 A-1001-1550572419688 column=f:age, timestamp=1549092014458, value=8 A-1001-1550572419688 column=f:uuid, timestamp=1549092014458, value=f04ba835-d8ac-49a3-8f96 A-1002-1550572424041 column=f:age, timestamp=1549092018816, value=84 A-1002-1550572424041 column=f:uuid, timestamp=1549092018816, value=99d6c989-afb5-4101-9d95 A-1003-1550572431830 column=f:age, timestamp=1549092026605, value=21 A-1003-1550572431830 column=f:uuid, timestamp=1549092026605, value=8c1ff1b6-b97c-4059-9b68 A-1004-1550572395399 column=f:age, timestamp=1549091990253, value=2 A-1004-1550572395399 column=f:uuid, timestamp=1549091990253, value=e240aa0f-c044-452f-89c0 A-1004-1550572403783 column=f:age, timestamp=1549091998555, value=6 A-1004-1550572403783 column=f:uuid, timestamp=1549091998555, value=e8df15c9-02fa-458e-bd0c 10 row(s) Took 0.1104 seconds
使用协处理器查询加盐之后的表
现在有数据了,我们需要查询所有 UID = 1000 的用户所有历史数据,那么如何查呢?我们知道 UID = 1000 的用户数据是均匀放到上述的27个 Region 里面的,因为经过加盐了,所以这些数据前缀都是类似于 A-,B-,C-
等开头的。其次我们需要知道,每个 Region 其实是有 Start Key 和 End Key 的,这些 Start Key 和 End Key 其实就是我们创建 iteblog 表指定的。如果你看了 《HBase 协处理器入门及实战》 这篇文章,你就知道协处理器的代码其实是在每个 Region 里面执行的;而这些代码在 Region 里面执行的时候是可以拿到当前 Region 的信息,包括了 Start Key 和 End Key,所以其实我们可以将拿到的 Start Key 信息和查询的 UID 进行拼接,这样就可以查询我们要的数据。协处理器处理篇就是基于这样的思想来查询加盐之后的数据的。
定义 proto 文件
为什么需要定义这个请参见 《HBase 协处理器入门及实战》 这篇文章。因为我们查询的时候需要传入查询的参数,比如tableName、 StartKey 、 EndKey 以及是否加盐等标记;同时当查询到结果的时候,我们还需要将数据返回,所以我们定义的 proto 文件如下:
option java_package = "com.iteblog.data.coprocessor.generated"; option java_outer_classname = "DataQueryProtos"; option java_generic_services = true; option java_generate_equals_and_hash = true; option optimize_for = SPEED; message DataQueryRequest { optional string tableName = 1; optional string startRow = 2; optional string endRow = 3; optional bool incluedEnd = 4; optional bool isSalting = 5; } message DataQueryResponse { message Cell{ required bytes value = 1; required bytes family = 2; required bytes qualifier = 3; required bytes row = 4; required int64 timestamp = 5; } message Row{ optional bytes rowKey = 1; repeated Cell cellList = 2; } repeated Row rowList = 1; } service QueryDataService{ rpc queryByStartRowAndEndRow(DataQueryRequest) returns (DataQueryResponse); }
然后我们使用 protobuf-maven-plugin
插件将上面的 proto 生成 java 类,具体如何操作参见 《在 IDEA 中使用 Maven 编译 proto 文件》。我们将生成的 DataQueryProtos.java
类拷贝到 com.iteblog.data.coprocessor.generated
包里面。
编写协处理器代码
有了请求和返回的类,现在我们需要编写协处理器的处理代码了,结合上面的分析,协处理器的代码实现如下:
package com.iteblog.data.coprocessor; import com.google.protobuf.ByteString; import com.google.protobuf.RpcCallback; import com.google.protobuf.RpcController; import com.google.protobuf.Service; import com.iteblog.data.coprocessor.generated.DataQueryProtos.QueryDataService; import com.iteblog.data.coprocessor.generated.DataQueryProtos.DataQueryRequest; import com.iteblog.data.coprocessor.generated.DataQueryProtos.DataQueryResponse; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CoprocessorEnvironment; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.coprocessor.CoprocessorException; import org.apache.hadoop.hbase.coprocessor.RegionCoprocessor; import org.apache.hadoop.hbase.coprocessor.RegionCoprocessorEnvironment; import org.apache.hadoop.hbase.regionserver.InternalScanner; import org.apache.hadoop.hbase.shaded.protobuf.ResponseConverter; import org.apache.hadoop.hbase.util.Bytes; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.List; public class SlatTableDataSearch extends QueryDataService implements RegionCoprocessor { private RegionCoprocessorEnvironment env; public Iterable<Service> getServices() { return Collections.singleton(this); } @Override public void queryByStartRowAndEndRow(RpcController controller, DataQueryRequest request, RpcCallback<DataQueryResponse> done) { DataQueryResponse response = null; String startRow = request.getStartRow(); String endRow = request.getEndRow(); String regionStartKey = Bytes.toString(this.env.getRegion().getRegionInfo().getStartKey()); if (request.getIsSalting()) { String startSalt = null; if (null != regionStartKey && regionStartKey.length() != 0) { startSalt = regionStartKey; } if (null != startSalt && null != startRow) { startRow = startSalt + "-" + startRow; endRow = startSalt + "-" + endRow; } } Scan scan = new Scan(); if (null != startRow) { scan.withStartRow(Bytes.toBytes(startRow)); } if (null != endRow) { scan.withStopRow(Bytes.toBytes(endRow), request.getIncluedEnd()); } try (InternalScanner scanner = this.env.getRegion().getScanner(scan)) { List<Cell> results = new ArrayList<>(); boolean hasMore; DataQueryResponse.Builder responseBuilder = DataQueryResponse.newBuilder(); do { hasMore = scanner.next(results); DataQueryResponse.Row.Builder rowBuilder = DataQueryResponse.Row.newBuilder(); if (results.size() > 0) { Cell cell = results.get(0); rowBuilder.setRowKey(ByteString.copyFrom(cell.getRowArray(), cell.getRowOffset(), cell.getRowLength())); for (Cell kv : results) { buildCell(rowBuilder, kv); } } responseBuilder.addRowList(rowBuilder); results.clear(); } while (hasMore); response = responseBuilder.build(); } catch (IOException e) { ResponseConverter.setControllerException(controller, e); } done.run(response); } private void buildCell(DataQueryResponse.Row.Builder rowBuilder, Cell kv) { DataQueryResponse.Cell.Builder cellBuilder = DataQueryResponse.Cell.newBuilder(); cellBuilder.setFamily(ByteString.copyFrom(kv.getFamilyArray(), kv.getFamilyOffset(), kv.getFamilyLength())); cellBuilder.setQualifier(ByteString.copyFrom(kv.getQualifierArray(), kv.getQualifierOffset(), kv.getQualifierLength())); cellBuilder.setRow(ByteString.copyFrom(kv.getRowArray(), kv.getRowOffset(), kv.getRowLength())); cellBuilder.setValue(ByteString.copyFrom(kv.getValueArray(), kv.getValueOffset(), kv.getValueLength())); cellBuilder.setTimestamp(kv.getTimestamp()); rowBuilder.addCellList(cellBuilder); } /** * Stores a reference to the coprocessor environment provided by the * {@link org.apache.hadoop.hbase.regionserver.RegionCoprocessorHost} from the region where this * coprocessor is loaded. Since this is a coprocessor endpoint, it always expects to be loaded * on a table region, so always expects this to be an instance of * {@link RegionCoprocessorEnvironment}. * * @param env the environment provided by the coprocessor host * @throws IOException if the provided environment is not an instance of * {@code RegionCoprocessorEnvironment} */ @Override public void start(CoprocessorEnvironment env) throws IOException { if (env instanceof RegionCoprocessorEnvironment) { this.env = (RegionCoprocessorEnvironment) env; } else { throw new CoprocessorException("Must be loaded on a table region!"); } } @Override public void stop(CoprocessorEnvironment env) { // nothing to do } }
大家可以看到,这里面的代码框架和 《HBase 协处理器入门及实战》 里面介绍的 HBase 提供的 RowCountEndpoint
示例代码很类似。主要逻辑在 queryByStartRowAndEndRow
函数实现里面。我们通过 DataQueryRequest
拿到客户端查询的表,StartKey 和 EndKey 等数据。通过 this.env.getRegion().getRegionInfo().getStartKey()
可以拿到当前 Region 的 StartKey,然后再和客户端传进来的 StartKey 和 EndKey 进行拼接就可以拿到完整的 Rowkey 前缀。剩下的查询就是正常的 HBase Scan 代码了。
现在我们将 SlatTableDataSearch
类进行编译打包,并部署到 HBase 表里面去,具体如何部署参见 《HBase 协处理器入门及实战》
协处理器客户端代码编写
到这里,我们的协处理器服务器端的代码和部署已经完成了,现在我们需要编写协处理器客户端代码。其实也很简单,如下:
package com.iteblog.data; import com.iteblog.data.coprocessor.generated.DataQueryProtos.QueryDataService; import com.iteblog.data.coprocessor.generated.DataQueryProtos.DataQueryRequest; import com.iteblog.data.coprocessor.generated.DataQueryProtos.DataQueryResponse; import com.iteblog.data.coprocessor.generated.DataQueryProtos.DataQueryResponse.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.ipc.CoprocessorRpcUtils.BlockingRpcCallback; import org.apache.hadoop.hbase.ipc.ServerRpcController; import java.util.LinkedList; import java.util.List; import java.util.Map; public class DataQuery { private static Configuration conf = null; static { conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "https://www.iteblog.com:2181"); } static List<Row> queryByStartRowAndStopRow(String tableName, String startRow, String stopRow, boolean isIncludeEnd, boolean isSalting) { final DataQueryRequest.Builder requestBuilder = DataQueryRequest.newBuilder(); requestBuilder.setTableName(tableName); requestBuilder.setStartRow(startRow); requestBuilder.setEndRow(stopRow); requestBuilder.setIncluedEnd(isIncludeEnd); requestBuilder.setIsSalting(isSalting); try { Connection connection = ConnectionFactory.createConnection(conf); HTable table = (HTable) connection.getTable(TableName.valueOf(tableName)); Map<byte[], List<Row>> result = table.coprocessorService(QueryDataService.class, null, null, counter -> { ServerRpcController controller = new ServerRpcController(); BlockingRpcCallback<DataQueryResponse> call = new BlockingRpcCallback<>(); counter.queryByStartRowAndEndRow(controller, requestBuilder.build(), call); DataQueryResponse response = call.get(); if (controller.failedOnException()) { throw controller.getFailedOn(); } return response.getRowListList(); }); List<Row> list = new LinkedList<>(); for (Map.Entry<byte[], List<Row>> entry : result.entrySet()) { if (null != entry.getKey()) { list.addAll(entry.getValue()); } } return list; } catch (Throwable e) { e.printStackTrace(); } return null; } public static void main(String[] args) { List<Row> rows = queryByStartRowAndStopRow("iteblog", "1000", "1001", false, true); if (null != rows) { System.out.println(rows.size()); for (DataQueryResponse.Row row : rows) { List<DataQueryResponse.Cell> cellListList = row.getCellListList(); for (DataQueryResponse.Cell cell : cellListList) { System.out.println(row.getRowKey().toStringUtf8() + " \t " + "column=" + cell.getFamily().toStringUtf8() + ":" + cell.getQualifier().toStringUtf8() + ", " + "timestamp=" + cell.getTimestamp() + ", " + "value=" + cell.getValue().toStringUtf8()); } } } } }
我们运行上面的代码,可以得到如下的输出:
A-1000-1550572395399 column=f:age, timestamp=1549091990253, value=54 A-1000-1550572395399 column=f:uuid, timestamp=1549091990253, value=e9b10a9f-1218-43fd-bd01 A-1000-1550572413799 column=f:age, timestamp=1549092008575, value=4 A-1000-1550572413799 column=f:uuid, timestamp=1549092008575, value=181aa91e-5f1d-454c-959c A-1000-1550572414761 column=f:age, timestamp=1549092009531, value=33 A-1000-1550572414761 column=f:uuid, timestamp=1549092009531, value=19aad8d3-621a-473c-8f9f B-1000-1550572388491 column=f:age, timestamp=1549091983276, value=1 B-1000-1550572388491 column=f:uuid, timestamp=1549091983276, value=cf720efe-2ad2-48d6-81b8 B-1000-1550572392922 column=f:age, timestamp=1549091987701, value=7 B-1000-1550572392922 column=f:uuid, timestamp=1549091987701, value=8a047118-e130-48cb-adfe hbase(main):020:0> scan 'iteblog', {STARTROW => 'A-1000', ENDROW => 'A-1001'} ROW COLUMN+CELL A-1000-1550572395399 column=f:age, timestamp=1549091990253, value=54 A-1000-1550572395399 column=f:uuid, timestamp=1549091990253, value=e9b10a9f-1218-43fd-bd01 A-1000-1550572413799 column=f:age, timestamp=1549092008575, value=4 A-1000-1550572413799 column=f:uuid, timestamp=1549092008575, value=181aa91e-5f1d-454c-959c A-1000-1550572414761 column=f:age, timestamp=1549092009531, value=33 A-1000-1550572414761 column=f:uuid, timestamp=1549092009531, value=19aad8d3-621a-473c-8f9f 3 row(s) Took 0.0569 seconds
可以看到,和我们使用 HBase Shell 输出的一致,而且我们还把所有的 UID = 1000 的数据拿到了。好了,到这里,使用协处理器查询 HBase 加盐之后的表已经算完成了,明天我将介绍使用 Spark 如何查询加盐之后的表。
本博客文章除特别声明,全部都是原创!原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【HBase 中加盐(Salting)之后的表如何读取:协处理器篇】(https://www.iteblog.com/archives/2507.html)