Hadoop YARN自带了一系列的web service REST API,我们可以通过这些web service访问集群(cluster)、节点(nodes)、应用(application)以及应用的历史信息。根据API返回的类型,这些URL源归会类到不同的组。一些API返回collector类型的,有些返回singleton类型。这些web service REST API的语法如下:
http://{http address of service}/ws/{version}/{resourcepath}
其中,{http address of service}是我们需要获取信息的服务器地址,目前支持访问ResourceManager, NodeManager,MapReduce application master, and history server;{version}是这些API的版本,目前只支持v1;{resourcepath}定义singleton资源或者collection资源的路径.
下面举例说明这些web service怎么用。
假设你有一个application_1388830974669_1540349作业,并且运行完了。可以通过下面的命令得到这个作业的一些信息:
$ curl --compressed -H "Accept: application/json" -X \ GET "http://host.domain.com:8088/ws/v1/cluster/apps/application_1326821518301_0010"
上面的运行结果是返回一个Json格式的,如下:
{
"app" : {
"finishedTime" : 0,
"amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326821518301_0010_01_000001",
"trackingUI" : "ApplicationMaster",
"state" : "RUNNING",
"user" : "user1",
"id" : "application_1326821518301_0010",
"clusterId" : 1326821518301,
"finalStatus" : "UNDEFINED",
"amHostHttpAddress" : "host.domain.com:8042",
"progress" : 82.44703,
"name" : "Sleep job",
"startedTime" : 1326860715335,
"elapsedTime" : 31814,
"diagnostics" : "",
"trackingUrl" : "http://host.domain.com:8088/proxy/application_1326821518301_0010/",
"queue" : "a1"
}
}
根据这些信息,用户可以获取到更多关于application_1326821518301_0010的信息,比如大家可以通过上面Json中的trackingUrl从ResourceManage中得到更进一步的信息:
$ curl --compressed -H "Accept: application/json" -X \
GET "http://host.domain.com:8088/proxy/application_1326821518301_0010/ws/v1/mapreduce/jobs"
{
"jobs" : {
"job" : [
{
"runningReduceAttempts" : 1,
"reduceProgress" : 72.104515,
"failedReduceAttempts" : 0,
"newMapAttempts" : 0,
"mapsRunning" : 0,
"state" : "RUNNING",
"successfulReduceAttempts" : 0,
"reducesRunning" : 1,
"acls" : [
{
"value" : " ",
"name" : "mapreduce.job.acl-modify-job"
},
{
"value" : " ",
"name" : "mapreduce.job.acl-view-job"
}
],
"reducesPending" : 0,
"user" : "user1",
"reducesTotal" : 1,
"mapsCompleted" : 1,
"startTime" : 1326860720902,
"id" : "job_1326821518301_10_10",
"successfulMapAttempts" : 1,
"runningMapAttempts" : 0,
"newReduceAttempts" : 0,
"name" : "Sleep job",
"mapsPending" : 0,
"elapsedTime" : 64432,
"reducesCompleted" : 0,
"mapProgress" : 100,
"diagnostics" : "",
"failedMapAttempts" : 0,
"killedReduceAttempts" : 0,
"mapsTotal" : 1,
"uberized" : false,
"killedMapAttempts" : 0,
"finishTime" : 0
}
]
}
}
如果用户希望得到上述job id为job_1326821518301_10_10作业的一些task信息可以用下面命令执行:
$ curl --compressed -H "Accept: application/json" -X \
GET "http://host.domain.com:8088/proxy/application_1326821518301_0010/ws/v1/mapreduce/jobs/job_1326821518301_10_10/tasks"
输出:
{
"tasks" : {
"task" : [
{
"progress" : 100,
"elapsedTime" : 5059,
"state" : "SUCCEEDED",
"startTime" : 1326860725014,
"id" : "task_1326821518301_10_10_m_0",
"type" : "MAP",
"successfulAttempt" : "attempt_1326821518301_10_10_m_0_0",
"finishTime" : 1326860730073
},
{
"progress" : 72.104515,
"elapsedTime" : 0,
"state" : "RUNNING",
"startTime" : 1326860732984,
"id" : "task_1326821518301_10_10_r_0",
"type" : "REDUCE",
"successfulAttempt" : "",
"finishTime" : 0
}
]
}
}
送上面可以看出,map任务已经完成了,但是reduce任务还在跑。如果用户需要看一下task_1326821518301_10_10_r_0 task的信息,可以用下面的命令:
$ curl --compressed -X \
GET "http://host.domain.com:8088/proxy/application_1326821518301_0010/ws/v1/ \
mapreduce/jobs/job_1326821518301_10_10/tasks/task_1326821518301_10_10_r_0/attempts"
输出:
{
"taskAttempts" : {
"taskAttempt" : [
{
"elapsedMergeTime" : 158,
"shuffleFinishTime" : 1326860735378,
"assignedContainerId" : "container_1326821518301_0010_01_000003",
"progress" : 72.104515,
"elapsedTime" : 0,
"state" : "RUNNING",
"elapsedShuffleTime" : 2394,
"mergeFinishTime" : 1326860735536,
"rack" : "/10.10.10.0",
"elapsedReduceTime" : 0,
"nodeHttpAddress" : "host.domain.com:8042",
"type" : "REDUCE",
"startTime" : 1326860732984,
"id" : "attempt_1326821518301_10_10_r_0_0",
"finishTime" : 0
}
]
}
}
reduce attempt 还在运行,如果用户需要查看对应的attempt当前的counter values,可以用下面命令:
$ curl --compressed -H "Accept: application/json" -X GET \
"http://host.domain.com:8088/proxy/application_1326821518301_0010/ws/v1/mapreduce \
/jobs/job_1326821518301_10_10/tasks/task_1326821518301_10_10_r_0/attempts \
/attempt_1326821518301_10_10_r_0_0/counters"
输出:
{
"JobTaskAttemptCounters" : {
"taskAttemptCounterGroup" : [
{
"counterGroupName" : "org.apache.hadoop.mapreduce.FileSystemCounter",
"counter" : [
{
"value" : 4216,
"name" : "FILE_BYTES_READ"
},
{
"value" : 77151,
"name" : "FILE_BYTES_WRITTEN"
},
{
"value" : 0,
"name" : "FILE_READ_OPS"
},
{
"value" : 0,
"name" : "FILE_LARGE_READ_OPS"
},
{
"value" : 0,
"name" : "FILE_WRITE_OPS"
},
{
"value" : 0,
"name" : "HDFS_BYTES_READ"
},
{
"value" : 0,
"name" : "HDFS_BYTES_WRITTEN"
},
{
"value" : 0,
"name" : "HDFS_READ_OPS"
},
{
"value" : 0,
"name" : "HDFS_LARGE_READ_OPS"
},
{
"value" : 0,
"name" : "HDFS_WRITE_OPS"
}
]
},
{
"counterGroupName" : "org.apache.hadoop.mapreduce.TaskCounter",
"counter" : [
{
"value" : 0,
"name" : "COMBINE_INPUT_RECORDS"
},
{
"value" : 0,
"name" : "COMBINE_OUTPUT_RECORDS"
},
{
"value" : 1767,
"name" : "REDUCE_INPUT_GROUPS"
},
{
"value" : 25104,
"name" : "REDUCE_SHUFFLE_BYTES"
},
{
"value" : 1767,
"name" : "REDUCE_INPUT_RECORDS"
},
{
"value" : 0,
"name" : "REDUCE_OUTPUT_RECORDS"
},
{
"value" : 0,
"name" : "SPILLED_RECORDS"
},
{
"value" : 1,
"name" : "SHUFFLED_MAPS"
},
{
"value" : 0,
"name" : "FAILED_SHUFFLE"
},
{
"value" : 1,
"name" : "MERGED_MAP_OUTPUTS"
},
{
"value" : 50,
"name" : "GC_TIME_MILLIS"
},
{
"value" : 1580,
"name" : "CPU_MILLISECONDS"
},
{
"value" : 141320192,
"name" : "PHYSICAL_MEMORY_BYTES"
},
{
"value" : 1118552064,
"name" : "VIRTUAL_MEMORY_BYTES"
},
{
"value" : 73728000,
"name" : "COMMITTED_HEAP_BYTES"
}
]
},
{
"counterGroupName" : "Shuffle Errors",
"counter" : [
{
"value" : 0,
"name" : "BAD_ID"
},
{
"value" : 0,
"name" : "CONNECTION"
},
{
"value" : 0,
"name" : "IO_ERROR"
},
{
"value" : 0,
"name" : "WRONG_LENGTH"
},
{
"value" : 0,
"name" : "WRONG_MAP"
},
{
"value" : 0,
"name" : "WRONG_REDUCE"
}
]
},
{
"counterGroupName" : "org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter",
"counter" : [
{
"value" : 0,
"name" : "BYTES_WRITTEN"
}
]
}
],
"id" : "attempt_1326821518301_10_10_r_0_0"
}
}
当job完成之后,用户希望从历史服务器中获取这些作业的信息,可以用下面命令:
$ curl --compressed -X GET \
"http://host.domain.com:19888/ws/v1/history/mapreduce/jobs/job_1326821518301_10_10"
输出:
{
"job" : {
"avgReduceTime" : 1250784,
"failedReduceAttempts" : 0,
"state" : "SUCCEEDED",
"successfulReduceAttempts" : 1,
"acls" : [
{
"value" : " ",
"name" : "mapreduce.job.acl-modify-job"
},
{
"value" : " ",
"name" : "mapreduce.job.acl-view-job"
}
],
"user" : "user1",
"reducesTotal" : 1,
"mapsCompleted" : 1,
"startTime" : 1326860720902,
"id" : "job_1326821518301_10_10",
"avgMapTime" : 5059,
"successfulMapAttempts" : 1,
"name" : "Sleep job",
"avgShuffleTime" : 2394,
"reducesCompleted" : 1,
"diagnostics" : "",
"failedMapAttempts" : 0,
"avgMergeTime" : 2552,
"killedReduceAttempts" : 0,
"mapsTotal" : 1,
"queue" : "a1",
"uberized" : false,
"killedMapAttempts" : 0,
"finishTime" : 1326861986164
}
}
用户也可以从ResourceManager中获取到最终applications的信息:
$ curl --compressed -H "Accept: application/json" -X GET \
"http://host.domain.com:8088/ws/v1/cluster/apps/application_1326821518301_0010"
输出:
{
"app" : {
"finishedTime" : 1326861991282,
"amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326821518301_0010_01_000001",
"trackingUI" : "History",
"state" : "FINISHED",
"user" : "user1",
"id" : "application_1326821518301_0010",
"clusterId" : 1326821518301,
"finalStatus" : "SUCCEEDED",
"amHostHttpAddress" : "host.domain.com:8042",
"progress" : 100,
"name" : "Sleep job",
"startedTime" : 1326860715335,
"elapsedTime" : 1275947,
"diagnostics" : "",
"trackingUrl" : "http://host.domain.com:8088/proxy/application_1326821518301_0010/jobhistory/job/job_1326821518301_10_10",
"queue" : "a1"
}
}
本博客文章除特别声明,全部都是原创!原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Hadoop YARN中web服务的REST API介绍】(https://www.iteblog.com/archives/960.html)


初次拜访,表示极大的支持