Flink Forward 是由 Apache 官方授权,Apache Flink China社区支持,有来自阿里巴巴,Ververica(Apache Flink 商业母公司)、腾讯、Google、Airbnb以及 Uber 等公司参加的国际型会议。旨在汇集大数据领域一流人才共同探讨新一代大数据计算引擎技术。通过参会不仅可以了解到Flink社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕Flink生 6年前 (2019-04-20) 3492℃ 0评论11喜欢
到目前为止,我们在使用 CQL 建表的时候使用到了一些数据类型,比如 text、timeuuid等。本文将介绍 Apache Cassandra 内置及自定义数据类型。和其他语言一样,CQL 也支持一系列灵活的数据类型,包括基本的数据类型,集合类型以及用户自定义数据类(User-Defined Types,UDTs)。下面将介绍 CQL 支持的数据类型。如果想及时了解Spark、Hadoop或 6年前 (2019-04-15) 2313℃ 0评论2喜欢
假设我们有这样的场景:我们想在 Cassandra 中使用一张表记录用户基本信息(比如 email、密码等)以及用户状态更新。我们知道,用户的基本信息一般很少会变动,但是状态会经常变化,如果每次状态更新都把用户基本信息都加进去,势必会让费大量的存储空间。为了解决这种问题,Cassandra 引入了 static column。同一个 partition key 中被 6年前 (2019-04-12) 1384℃ 0评论2喜欢
在前面的文章《Apache Cassandra 快速入门指南(Quick Start)》 我们简单介绍了 Cassandra 的一些基本知识。在那篇文章里面我们使用了下面语句创建了一张名为 iteblog_user 的表:[code lang="sql"]cqlsh> use iteblog_keyspace;cqlsh:iteblog_keyspace> CREATE TABLE iteblog_user (first_name text , last_name text, PRIMARY KEY (first_name)) ;[/code]建表语句里面有个 PRIMARY KE 6年前 (2019-04-09) 1186℃ 2评论0喜欢
我们在这篇文章简单介绍了 Apache Cassandra 是什么,以及有什么值得关注的特性。本文将简单介绍 Apache Cassandra 的安装以及简单使用,可以帮助大家快速了解 Apache Cassandra。我们到 Apache Cassandra 的官方网站下载最新版本的 Cassandra,在本文写作时最新版本的 Cassandra 为 3.11.4。Apache Cassandra 可以在 Linux、Unix、Mac OS 以及 Windows 上进行安装 6年前 (2019-04-07) 5092℃ 0评论8喜欢
Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件。很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中就包括了 HBase,但是内置的读取数据源还是使用了 TableInputFormat 来读取 HBase 中的数据。这个 TableInputFormat 有一些缺点:一个 Task 里面只能启动一个 Scan 去 HBase 中读取数据;TableIn 6年前 (2019-04-02) 13136℃ 5评论18喜欢
Apache Hive 从 HIVE-1555 开始引入了 JdbcStorageHandler ,这个使得 Hive 能够读取 JDBC 数据源,关于 Apache Hive 引入 JdbcStorageHandler 的背景可以参见 《Apache Hive 联邦查询(Query Federation)》。本文主要简单介绍 JdbcStorageHandler 的使用。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop语法JdbcStorageHandler 使 6年前 (2019-04-01) 3434℃ 0评论9喜欢
Apache Cassandra 是一个开源的、分布式、无中心、弹性可扩展、高可用、容错、一致性可调、面向行的数据库,它基于 Amazon Dynamo 的分布式设计和 Google Bigtable 的数据模型,由 Facebook 创建,在一些最流行的网站中得到应用。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop为什么会诞生 Apache Cassand 6年前 (2019-03-31) 3222℃ 4评论6喜欢
有赞数据平台从2017年上半年开始,逐步使用 SparkSQL 替代 Hive 执行离线任务,目前 SparkSQL 每天的运行作业数量5000个,占离线作业数目的55%,消耗的 cpu 资源占集群总资源的50%左右。本文介绍由 SparkSQL 替换 Hive 过程中碰到的问题以及处理经验和优化建议,包括以下方面的内容:有赞数据平台的整体架构。SparkSQL 在有赞的技术演进 6年前 (2019-03-20) 8287℃ 5评论29喜欢
在使用 Spark 进行计算时,我们经常会碰到作业 (Job) Out Of Memory(OOM) 的情况,而且很大一部分情况是发生在 Shuffle 阶段。那么在 Spark Shuffle 中具体是哪些地方会使用比较多的内存而有可能导致 OOM 呢? 为此,本文将围绕以上问题梳理 Spark 内存管理和 Shuffle 过程中与内存使用相关的知识;然后,简要分析下在 Spark Shuffle 中有可能导致 OOM 6年前 (2019-03-17) 5387℃ 0评论19喜欢