《Kafka剖析:Kafka背景及架构介绍》《Kafka设计解析:Kafka High Availability(上)》《Kafka设计解析:Kafka High Availability (下)》《Kafka设计解析:Replication工具》《Kafka设计解析:Kafka Consumer解析》 本文在上篇文章(《Kafka设计解析:Kafka High Availability(上)》)基础上,更加深入讲解了Kafka的HA机制,主要阐述了HA相关各种 10年前 (2015-06-04) 4512℃ 0评论6喜欢
社区在Spark 1.3中开始引入了DataFrames,使得Apache Spark更加容易被使用。受R和Python中的data frames激发,Spark中的DataFrames提供了一些API,这些API在外部看起来像是操作单机的数据一样,而数据科学家对这些API非常地熟悉。统计是日常数据科学的一个重要组成部分。在即将发布的Spark 1.4中改进支持统计函数和数学函数(statistical and mathem 10年前 (2015-06-03) 14014℃ 2评论3喜欢
Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效。但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这个消费的偏移量发送到Zookeeper中, 10年前 (2015-06-02) 25722℃ 36评论22喜欢
CSV格式的文件也称为逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号。在本文中的CSV格式的数据就不是简单的逗号分割的),其文件以纯文本形式存表格数据(数字和文本)。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符 10年前 (2015-06-01) 61258℃ 2评论26喜欢
有时候我们在发送HTTP请求的时候会使用到POST方式,如果是传送普通的表单数据那将很方便,直接将参数到一个Key-value形式的Map中即可。但是如果我们需要传送的参数是Json格式的,会稍微有点麻烦,我们可以使用HttpClient类库提供的功能来实现这个需求。假设我们需要发送的数据是:[code lang="java"]{ "blog": "", 10年前 (2015-06-01) 84876℃ 0评论72喜欢
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming、Spark SQL、MLlib、GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑、这也得益于Scala编程语言的简洁性。这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时 10年前 (2015-05-30) 37461℃ 2评论76喜欢
《Spark meetup(Beijing)资料分享》 《Spark meetup(杭州)PPT资料分享》 《北京第二次Spark meetup会议资料分享》 《北京第三次Spark meetup会议资料分享》 《北京第四次Spark meetup会议资料分享》 《北京第五次Spark meetup会议资料分享》》 《北京第六次Spark meetup会议资料分享》 《杭州第三次Spark meetup会议 10年前 (2015-05-29) 5405℃ 0评论3喜欢
[电子书]Hadoop权威指南第3版中文版PDF下载 本书英文名是:Hadoop:the Definitive Guide,4rd Edition,中文名:Hadoop权威指南,著名的O'Reilly Media出版社出版,这里提供下载的是2015年3月出版的最终版,电子书756页,9.6MB,非之前网上传的。 这里提供的是英文写作的,它的内容组织得当,思路清晰,紧密结合实际。但是要把它翻译成 10年前 (2015-05-29) 41934℃ 7评论92喜欢
MapReduce和Spark比较 目前的大数据处理可以分为以下三个类型: 1、复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间; 2、基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间; 3、基于实时数据流的数据处理(streaming data processing),通常的时间 10年前 (2015-05-28) 4931℃ 0评论7喜欢
Apache Hive 1.0.1 和 1.1.1两个版本同时发布,他们分别是基于Hive 1.0.0和Hive 1.1.0,这两个版本都同时修复可同一个Bug:LDAP授权provider的漏洞。如果用户在HiveServer2里面使用到LDAP授权模式(hive.server2.authentication=LDAP),并且LDAP使用简单地未认证模式,或者是匿名绑定(anonymous bind),在这种情况下未得到合理授权的用户将得到认证(authe 10年前 (2015-05-25) 5003℃ 0评论3喜欢