欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

w397090770的文章

Kafka

Kafka设计解析:Kafka High Availability (下)

Kafka设计解析:Kafka High Availability (下)
《Kafka剖析:Kafka背景及架构介绍》《Kafka设计解析:Kafka High Availability(上)》《Kafka设计解析:Kafka High Availability (下)》《Kafka设计解析:Replication工具》《Kafka设计解析:Kafka Consumer解析》  本文在上篇文章(《Kafka设计解析:Kafka High Availability(上)》)基础上,更加深入讲解了Kafka的HA机制,主要阐述了HA相关各种

  10年前 (2015-06-04) 4512℃ 0评论6喜欢

Python

Spark1.4中DataFrame功能加强,新增科学和数学函数

Spark1.4中DataFrame功能加强,新增科学和数学函数
  社区在Spark 1.3中开始引入了DataFrames,使得Apache Spark更加容易被使用。受R和Python中的data frames激发,Spark中的DataFrames提供了一些API,这些API在外部看起来像是操作单机的数据一样,而数据科学家对这些API非常地熟悉。统计是日常数据科学的一个重要组成部分。在即将发布的Spark 1.4中改进支持统计函数和数学函数(statistical and mathem

  10年前 (2015-06-03) 14014℃ 2评论3喜欢

Kafka

Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现

Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现
  Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效。但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这个消费的偏移量发送到Zookeeper中,

  10年前 (2015-06-02) 25722℃ 36评论22喜欢

Python

使用Spark读写CSV格式文件

使用Spark读写CSV格式文件
  CSV格式的文件也称为逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号。在本文中的CSV格式的数据就不是简单的逗号分割的),其文件以纯文本形式存表格数据(数字和文本)。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符

  10年前 (2015-06-01) 61258℃ 2评论26喜欢

网络编程

使用HttpClient通过post方式发送json数据

使用HttpClient通过post方式发送json数据
  有时候我们在发送HTTP请求的时候会使用到POST方式,如果是传送普通的表单数据那将很方便,直接将参数到一个Key-value形式的Map中即可。但是如果我们需要传送的参数是Json格式的,会稍微有点麻烦,我们可以使用HttpClient类库提供的功能来实现这个需求。假设我们需要发送的数据是:[code lang="java"]{ "blog": "",

  10年前 (2015-06-01) 84876℃ 0评论72喜欢

Kafka

Kafka+Spark Streaming+Redis实时系统实践

Kafka+Spark Streaming+Redis实时系统实践
  基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming、Spark SQL、MLlib、GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑、这也得益于Scala编程语言的简洁性。这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时

  10年前 (2015-05-30) 37461℃ 2评论76喜欢

Spark

上海第四次Spark meetup会议资料分享

上海第四次Spark meetup会议资料分享
  《Spark meetup(Beijing)资料分享》  《Spark meetup(杭州)PPT资料分享》  《北京第二次Spark meetup会议资料分享》  《北京第三次Spark meetup会议资料分享》  《北京第四次Spark meetup会议资料分享》  《北京第五次Spark meetup会议资料分享》》  《北京第六次Spark meetup会议资料分享》  《杭州第三次Spark meetup会议

  10年前 (2015-05-29) 5405℃ 0评论3喜欢

Hadoop

Hadoop权威指南第四版英文版pdf免费下载

Hadoop权威指南第四版英文版pdf免费下载
[电子书]Hadoop权威指南第3版中文版PDF下载  本书英文名是:Hadoop:the Definitive Guide,4rd Edition,中文名:Hadoop权威指南,著名的O'Reilly Media出版社出版,这里提供下载的是2015年3月出版的最终版,电子书756页,9.6MB,非之前网上传的。  这里提供的是英文写作的,它的内容组织得当,思路清晰,紧密结合实际。但是要把它翻译成

  10年前 (2015-05-29) 41934℃ 7评论92喜欢

Hadoop

如何将MapReduce程序转换为Spark程序

如何将MapReduce程序转换为Spark程序
MapReduce和Spark比较  目前的大数据处理可以分为以下三个类型:  1、复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间;  2、基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间;  3、基于实时数据流的数据处理(streaming data processing),通常的时间

  10年前 (2015-05-28) 4931℃ 0评论7喜欢

Hive

Apache Hive ​1.0.1和1.1.1两个版本同时发布

Apache Hive ​1.0.1和1.1.1两个版本同时发布
  Apache Hive ​1.0.1 和 1.1.1两个版本同时发布,他们分别是基于Hive 1.0.0和Hive 1.1.0,这两个版本都同时修复可同一个Bug:LDAP授权provider的漏洞。如果用户在HiveServer2里面使用到LDAP授权模式(hive.server2.authentication=LDAP),并且LDAP使用简单地未认证模式,或者是匿名绑定(anonymous bind),在这种情况下未得到合理授权的用户将得到认证(authe

  10年前 (2015-05-25) 5003℃ 0评论3喜欢