HDFS Federation为HDFS系统提供了NameNode横向扩容能力。然而作为一个已实现多年的解决方案,真正应用到已运行多年的大规模集群时依然存在不少的限制和问题。本文以实际应用场景出发,介绍了HDFS Federation在美团点评的实际应用经验。 背景 2015年10月,经过一段时间的优化与改进,美团点评HDFS集群稳定性和性能有显著 zz~~ 8年前 (2017-03-17) 2048℃ 0评论7喜欢
Hadoop Streaming 是 Hadoop 提供的一个 MapReduce 编程工具,它允许用户使用任何可执行文件、脚本语言或其他编程语言来实现 Mapper 和 Reducer,从而充分利用 Hadoop 并行计算框架的优势和能力,来处理大数据。而我们在官方文档或者是Hadoop权威指南看到的Hadoop Streaming例子都是使用 Ruby 或者 Python 编写的,官方说可以使用任何可执行文件 w397090770 8年前 (2017-03-14) 2725℃ 0评论2喜欢
我们在使用HDFS Shell的时候只用最频繁的命令可能就是 ls 了,其具体含义我就不介绍了。在使用 ls 的命令时,我们可能想对展示出来的文件按照修改时间排序,也就是最近修改的文件(most recent)显示在最前面。如果你使用的是Hadoop 2.8.0以下版本,内置是不支持按照时间等属性排序的。不过值得高兴的是,我们可以结合Shell命令来 w397090770 8年前 (2017-02-18) 12600℃ 0评论9喜欢
如果你经常写MapReduce作业,你肯定看到过以下的异常信息:[code lang="bash"]Application application_1409135750325_48141 failed 2 times due to AM Container forappattempt_1409135750325_48141_000002 exited with exitCode: 143 due to: Container[pid=4733,containerID=container_1409135750325_48141_02_000001] is running beyond physical memory limits.Current usage: 2.0 GB of 2 GB physical memory used; 6.0 GB of w397090770 8年前 (2016-12-29) 4242℃ 1评论11喜欢
如果你对Hadoop有基本的了解,并希望将您的知识用于企业的大数据解决方案,那你就来阅读本书吧。本书提供了六个使用Hadoop生态系统解决实际问题的例子,使得您的Hadoop知识提升到一个新的水平。本书作者:Anurag Shrivastava,由Packt出版社于2016年9月出版,全书共316页。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关 zz~~ 8年前 (2016-12-20) 3233℃ 1评论6喜欢
本书是《Hadoop权威指南》第三版,新版新特色,内容更详细。本书是为程序员写的,可帮助他们分析任何大小的数据集。本书同时也是为管理员写的,帮助他们了解如何设置和运行Hadoop集群。 本书通过丰富的案例学习来解释Hadoop的幕后机理,阐述了Hadoop如何解决现实生活中的具体问题。第3版覆盖Hadoop的新动态,包括新增 zz~~ 8年前 (2016-12-16) 17315℃ 0评论43喜欢
在HDFS中,DataNode 将数据块存储到本地文件系统目录中,具体的目录可以通过配置 hdfs-site.xml 里面的 dfs.datanode.data.dir 参数。在典型的安装配置中,一般都会配置多个目录,并且把这些目录分别配置到不同的设备上,比如分别配置到不同的HDD(HDD的全称是Hard Disk Drive)和SSD(全称Solid State Drives,就是我们熟悉的固态硬盘)上。 w397090770 8年前 (2016-12-13) 5916℃ 0评论13喜欢
在第一次建立Hbase表的时候,我们可能需要往里面一次性导入大量的初始化数据。我们很自然地想到将数据一条条插入到Hbase中,或者通过MR方式等。但是这些方式不是慢就是在导入的过程的占用Region资源导致效率低下,所以很不适合一次性导入大量数据。本文将针对这个问题介绍如何通过Hbase的BulkLoad方法来快速将海量数据导入到Hbas w397090770 8年前 (2016-11-28) 17861℃ 2评论52喜欢
本书作者Venkat Ankam,由Packt Publishing出版社在2016年09月发行,全书供326页。本书基于Spark 2.0和Hadoop 2.7版本介绍,是适合数据分析师和数据科学家的参考手册,当然也适合那些想入门的人。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop本书的章节[code lang="bash"]Chapter 1: Big Data Analytics at a 10 zz~~ 8年前 (2016-11-21) 4721℃ 0评论6喜欢
最近写了一个Spark程序用来读取Hbase中的数据,我的Spark版本是1.6.1,Hbase版本是0.96.2-hadoop2,当程序写完之后,使用下面命令提交作业:[code lang="java"][iteblog@www.iteblog.com $] bin/spark-submit --master yarn-cluster --executor-memory 4g --num-executors 5 --queue iteblog --executor-cores 2 --class com.iteblog.hbase.HBaseRead --jars spark-hbase-connector_2.10-1.0.3.jar,hbase-common-0.9 w397090770 8年前 (2016-11-03) 3639℃ 0评论7喜欢