在过去Spark社区创建了Spark 2.0的技术预览版,经过几天的投票,目前该技术预览版今天正式公布。《Spark 2.0技术预览:更容易、更快速、更智能》文章中详细介绍了Spark 2.0给我们带来的新功能,总体上Spark 2.0提升了下面三点: 1. 对标准的SQL支持,统一DataFrame和Dataset API。现在已经可以运行TPC-DS所有的99个查询,这99个查 w397090770 9年前 (2016-05-25) 2637℃ 0评论3喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章介绍了Spark的三大新特性,本文是Reynold Xin在2016年5月5日的演讲,视频可以到这里看:http://go.databricks.com/apache-spark-2.0-presented-by-databricks-co-founder-reynold-xinPPT下载地址见下面。 w397090770 9年前 (2016-05-24) 3282℃ 0评论4喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展方向奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一 w397090770 9年前 (2016-05-24) 13085℃ 0评论26喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一序列 w397090770 9年前 (2016-05-23) 22159℃ 0评论27喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展方向奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一 w397090770 9年前 (2016-05-19) 20992℃ 1评论32喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》shuffle调优调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对sh w397090770 9年前 (2016-05-15) 22559℃ 2评论52喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》前言 继《Spark性能优化:开发调优篇》和《Spark性能优化:资源调优篇》讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析 w397090770 9年前 (2016-05-14) 15653℃ 0评论30喜欢
在过去的几个月时间里,我们一直忙于我们所爱的大数据开源软件的下一个主要版本开发工作:Apache Spark 2.0。Spark 1.0已经出现了2年时间,在此期间,我们听到了赞美以及投诉。Spark 2.0的开发基于我们过去两年学到的:用户所喜爱的我们加倍投入;用户抱怨的我们努力提高。本文将总结Spark 2.0的三大主题:更容易、更快速、更智 w397090770 9年前 (2016-05-12) 8822℃ 2评论26喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》 在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参 w397090770 9年前 (2016-05-04) 30933℃ 8评论38喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》 在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计 w397090770 9年前 (2016-05-04) 16858℃ 3评论45喜欢