欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

 分类:Spark

Spark1.1.0预览文档(Spark Overview)

Spark1.1.0预览文档(Spark Overview)
  Apache Spark是快速的通用集群计算系统。它在Java、Scala以及Python等语言提供了高层次的API,并且在通用的图形计算方面提供了一个优化的引擎。同时,它也提供了丰富的高层次工具,这些工具包括了Spark SQL、结构化数据处理、机器学习工具(MLlib)、图形计算(GraphX)以及Spark Streaming。如果想及时了解Spark、Hadoop或者Hbase相关的文章,

w397090770   10年前 (2014-09-18) 3604℃ 0评论6喜欢

用Maven编译Spark 1.1.0

用Maven编译Spark 1.1.0
  Spark 1.1.0已经在前几天发布了(《Spark 1.1.0发布:各个模块得到全面升级》、《Spark 1.1.0正式发布》),本博客对Hive部分进行了部分说明:《Spark SQL 1.1.0和Hive的兼容说明》、《Shark迁移到Spark 1.1.0 编程指南》,在这个版本对Hive的支持更加完善了,如果想在Spark SQL中加入Hive,并加入JDBC server和CLI,我们可以在编译的时候通过加上参

w397090770   10年前 (2014-09-17) 18510℃ 8评论10喜欢

Spark 1.1.0发布:各个模块得到全面升级

Spark 1.1.0发布:各个模块得到全面升级
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop  今天我很激动地宣布Spark 1.1.0发布了,Spark 1.1.0引入了许多新特征(new features)包括了可扩展性和稳定性方面的提升。这篇文章主要是介绍了Spark 1.1.0主要的特性,下面的介绍主要是根据各个特征重要性的优先级进行说明的。在接下来的两个星

w397090770   10年前 (2014-09-12) 4698℃ 2评论8喜欢

Spark 1.1.0正式发布

Spark 1.1.0正式发布
  我们期待已久的Spark 1.1.0在美国时间的9月11日正式发布了,官方发布的声明如下:We are happy to announce the availability of Spark 1.1.0! Spark 1.1.0 is the second release on the API-compatible 1.X line. It is Spark’s largest release ever, with contributions from 171 developers!This release brings operational and performance improvements in Spark core including a new implementation of the Spark

w397090770   10年前 (2014-09-12) 3809℃ 0评论2喜欢

Spark SQL 1.1.0和Hive的兼容说明

Spark SQL 1.1.0和Hive的兼容说明
  Spark SQL也是可以直接部署在当前的Hive wareHouse。  Spark SQL 1.1.0的 Thrift JDBC server 被设计成兼容当前的Hive数据仓库。你不需要修改你的Hive元数据,或者是改变表的数据存放目录以及分区。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop  以下列出来的是当前Spark SQL(1.1.0)对Hive特性的

w397090770   10年前 (2014-09-11) 9421℃ 1评论8喜欢

Shark迁移到Spark 1.1.0 编程指南

Shark迁移到Spark 1.1.0 编程指南
  Spark 1.1.0马上就要发布了(估计就是明天),其中更新了很多功能。其中对Spark SQL进行了增强:  1、Spark 1.0是第一个预览版本( 1.0 was the first “preview” release);  2、Spark 1.1 将支持Shark更新(1.1 provides upgrade path for Shark),    (1)、Replaced Shark in our benchmarks with 2-3X perfgains;    (2)、Can perform optimizations with 10-

w397090770   10年前 (2014-09-11) 7786℃ 2评论5喜欢

Spark与Mysql(JdbcRDD)整合开发

Spark与Mysql(JdbcRDD)整合开发
  如果你需要将RDD写入到Mysql等关系型数据库,请参见《Spark RDD写入RMDB(Mysql)方法二》和《Spark将计算结果写入到Mysql中》文章。  Spark的功能是非常强大,在本博客的文章中,我们讨论了《Spark和Hbase整合》、《Spark和Flume-ng整合》以及《和Hive的整合》。今天我们的主题是聊聊Spark和Mysql的组合开发。如果想及时了解Spark、Had

w397090770   10年前 (2014-09-10) 38760℃ 7评论32喜欢

北京第二次Spark meetup会议资料分享

北京第二次Spark meetup会议资料分享
  《Spark meetup(Beijing)资料分享》  《Spark meetup(杭州)PPT资料分享》  《北京第二次Spark meetup会议资料分享》  《北京第三次Spark meetup会议资料分享》  《北京第四次Spark meetup会议资料分享》  《北京第五次Spark meetup会议资料分享》》  《北京第六次Spark meetup会议资料分享》如果想及时了解Spark、Hadoop或

w397090770   10年前 (2014-09-08) 18422℃ 177评论16喜欢

如何将Mapreduce程序转换成Spark程序

如何将Mapreduce程序转换成Spark程序
  本文详细地介绍了如何将Hadoop上的Mapreduce程序转换成Spark的应用程序。有兴趣的可以参考一下:The key to getting the most out of Spark is to understand the differences between its RDD API and the original Mapper and Reducer API.Venerable MapReduce has been Apache Hadoop‘s work-horse computation paradigm since its inception. It is ideal for the kinds of work for which Hadoop was originally des

w397090770   10年前 (2014-09-07) 6446℃ 1评论9喜欢

Spark meetup(杭州)PPT资料分享

Spark meetup(杭州)PPT资料分享
  《Spark meetup(Beijing)资料分享》  《Spark meetup(杭州)PPT资料分享》  《北京第二次Spark meetup会议资料分享》  《北京第三次Spark meetup会议资料分享》  《北京第四次Spark meetup会议资料分享》  《北京第五次Spark meetup会议资料分享》》  《北京第六次Spark meetup会议资料分享》  8月31日(13:30-17:30),杭州第

w397090770   10年前 (2014-09-01) 26664℃ 230评论17喜欢