过去十年,存储的速度从 50MB/s(HDD)提升到 16GB/s(NvMe);网络的速度从 1Gbps 提升到 100Gbps;但是 CPU 的主频从 2010 年的 3GHz 到现在基本不变,CPU 主频是目前数据分析的重要瓶颈。为了解决这个问题,越来越多的向量化执行引擎被开发出来。比如数砖的 Photon 、ClickHouse、Apache Doris、Intel 的 Gazelle 以及 Facebook 的 Velox(参见 《Velox 介绍 w397090770 2年前 (2022-09-29) 2085℃ 0评论3喜欢
如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:过往记忆大数据Velox 利用了大量的运行时优化,例如过滤器和连接的重新排序(conjunct reordering)、数组和基于哈希的聚合和连接的 key 标准化、动态过滤器下推(dynamic filter pushdown)和自适应列预取(adaptive column prefetching)。考虑到从传入的数据批次中提取的 w397090770 2年前 (2022-09-05) 2352℃ 0评论3喜欢