iceberg 详细设计Apache iceberg 是Netflix开源的全新的存储格式,我们已经有了parquet、orc、arvo等非常优秀的存储格式以后,Netfix为什么还要设计出iceberg呢?和parquet、orc等文件格式不同, iceberg在业界被称之为Table Foramt,parquet、orc、avro等文件等格式帮助我们高效的修改、读取单个文件;同样Table Foramt帮助我们高效的修改和读取一类文件 w397090770 4年前 (2021-04-15) 2307℃ 0评论6喜欢
为了更好的使用 Apache Iceberg,理解其时间旅行是很有必要的,这个其实也会对 Iceberg 表的读取过程有个大致了解。不过在介绍 Apache Iceberg 的时间旅行(Time travel)之前,我们需要了解 Apache Iceberg 的底层数据组织结构。Apache Iceberg 的底层数据组织我们在 《一条数据在 Apache Iceberg 之旅:写过程分析》 这篇文章中详细地介绍了 Apache I w397090770 4年前 (2020-11-29) 3701℃ 0评论4喜欢
在 《一条数据在 Apache Iceberg 之旅:写过程分析》 这篇文章中我们分析了 Apache Iceberg 写数据的源码。如下是我们使用 Spark 写两次数据到 Iceberg 表的数据目录布局(测试代码在 这里):[code lang="bash"]/data/hive/warehouse/default.db/iteblog├── data│ └── ts_year=2020│ ├── id_bucket=0│ │ ├── 00000-0-19603f5a-d38a w397090770 4年前 (2020-11-20) 6864℃ 6评论8喜欢
本文基于 Apache Iceberg 0.9.0 最新分支,主要分析 Apache Iceberg 中使用 Spark 2.4.6 来写数据到 Iceberg 表中,也就是对应 iceberg-spark2 模块。当然,Apache Iceberg 也支持 Flink 来读写 Iceberg 表,其底层逻辑也 Spark 类似,感兴趣的同学可以去看看。使用 Spark2 将数据写到 Apache Iceberg在介绍下面文章之前,我们先来看下在 Apache Spark 2.4.6 中写数 w397090770 4年前 (2020-11-12) 5963℃ 0评论9喜欢
在 Apache Iceberg 中有很多种方式可以来创建表,其中就包括使用 Catalog 方式或者实现 org.apache.iceberg.Tables 接口。下面我们来简单介绍如何使用。.如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop使用 Hive catalog从名字就可以看出,Hive catalog 是通过连接 Hive 的 MetaStore,把 Iceberg 的表存储到其中,它 w397090770 4年前 (2020-11-08) 2384℃ 0评论5喜欢
当前数据湖方向非常热门,市面上也出现了三款开源的数据湖产品:Delta Lake、Apache Hudi 以及 Apache Iceberg。这段时间抽了点时间看了下使用 Apache Spark 读写 Apache Iceberg 的代码。完全看代码肯定有些吃力,所以使用了代码调试功能。由于 Apache Iceberg 支持 Apache Spark 2.x 以及 3.x,并在创建了不同的模块。其相当于 Spark 的 Connect。Apache Spa w397090770 4年前 (2020-10-04) 1897℃ 0评论3喜欢
本文资料来自2020年9月5日由快手技术团队主办的快手大数据平台架构技术交流会,分享者邵赛赛,腾讯数据平台部数据湖内核技术负责人,资深大数据工程师,Apache Spark PMC member & committer, Apache Livy PMC member,曾就职于 Hortonworks,Intel 。随着大数据存储和处理需求的多样化,如何构建一个统一的数据湖存储,并在其上进行多种形式 w397090770 4年前 (2020-09-07) 4580℃ 3评论8喜欢
导言本文主要介绍如何快速的通过Spark访问 Iceberg table。如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoopSpark通过DataSource和DataFrame API访问Iceberg table,或者进行Catalog相关的操作。由于Spark Data Source V2 API还在持续的演进和修改中,所以Iceberg在不同的Spark版本中的使用方式有所不同。版本对比 w397090770 5年前 (2020-06-10) 10130℃ 0评论4喜欢
大数据处理技术现今已广泛应用于各个行业,为业务解决海量存储和海量分析的需求。但数据量的爆发式增长,对数据处理能力提出了更大的挑战,同时对时效性也提出了更高的要求。业务通常已不再满足滞后的分析结果,希望看到更实时的数据,从而在第一时间做出判断和决策。典型的场景如电商大促和金融风控等,基于延迟数 w397090770 5年前 (2020-06-08) 3953℃ 0评论3喜欢
目前市面上流行的三大开源数据湖方案分别为:Delta、Apache Iceberg 和 Apache Hudi。其中,由于 Apache Spark 在商业化上取得巨大成功,所以由其背后商业公司 Databricks 推出的 Delta 也显得格外亮眼。Apache Hudi 是由 Uber 的工程师为满足其内部数据分析的需求而设计的数据湖项目,它提供的 fast upsert/delete 以及 compaction 等功能可以说是精准命中 w397090770 5年前 (2020-03-05) 4005℃ 0评论2喜欢