最近写了一个Spark程序用来读取Hbase中的数据,我的Spark版本是1.6.1,Hbase版本是0.96.2-hadoop2,当程序写完之后,使用下面命令提交作业:[code lang="java"][iteblog@www.iteblog.com $] bin/spark-submit --master yarn-cluster --executor-memory 4g --num-executors 5 --queue iteblog --executor-cores 2 --class com.iteblog.hbase.HBaseRead --jars spark-hbase-connector_2.10-1.0.3.jar,hbase-common-0.9 w397090770 8年前 (2016-11-03) 3647℃ 0评论7喜欢
使用MapReduce解决任何问题之前,我们需要考虑如何设计。并不是任何时候都需要map和reduce job。MapReduce设计模式(MapReduce Design Pattern)整个MapReduce作业的阶段主要可以分为以下四种: 1、Input-Map-Reduce-Output 2、Input-Map-Output 3、Input-Multiple Maps-Reduce-Output 4、Input-Map-Combiner-Reduce-Output下面我将一一介绍哪种 w397090770 9年前 (2016-09-01) 5757℃ 0评论16喜欢
MapReduce作业可以细分为map task和reduce task,而MRAppMaster又将map task和reduce task分为四种状态: 1、pending:刚启动但尚未向resourcemanager发送资源请求; 2、scheduled:已经向resourceManager发送资源请求,但尚未分配到资源; 3、assigned:已经分配到了资源且正在运行; 4、completed:已经运行完成。 map task的 w397090770 9年前 (2016-08-01) 3479℃ 0评论4喜欢
XML(可扩展标记语言,英语:eXtensible Markup Language,简称: XML)是一种标记语言,也是行业标准数据交换交换格式,它很适合在系统之间进行数据存储和交换(话说Hadoop、Hive等的配置文件就是XML格式的)。本文将介绍如何使用MapReduce来读取XML文件。但是Hadoop内部是无法直接解析XML文件;而且XML格式中没有同步标记,所以并行地处 w397090770 9年前 (2016-03-07) 5858℃ 1评论7喜欢
经过几天的折腾,终于配置好了Hadoop2.2.0(如何配置在Linux平台部署Hadoop请参见本博客《在Fedora上部署Hadoop2.2.0伪分布式平台》),今天主要来说说怎么在Hadoop2.2.0伪分布式上面运行我们写好的Mapreduce程序。先给出这个程序所依赖的Maven包:[code lang="JAVA"]<dependencies> <dependency> <groupId>org.apache.hadoop</groupId> w397090770 11年前 (2013-10-29) 20402℃ 6评论10喜欢