本文翻译自:《Magnet: Push-based Shuffle Service for Large-scale Data Processing》摘要在过去的十年中,Apache Spark 已成为大规模数据处理的流行计算引擎。与其他基于 MapReduce 计算范式的计算引擎一样,随机Shuffle操作(即中间数据的全部对全部传输)在 Spark 中起着重要作用。在 LinkedIn,随着数据量和 Spark 部署规模的快速增长,随机Shuffle操作正 w397090770 3周前 (01-06) 25℃ 0评论0喜欢
随着 Spark >= 3.3(在 3.4 中更加成熟)中引入的存储分区连接(Storage Partition Join,SPJ)优化技术,您可以在不触发 Shuffle 的情况下对分区的数据源 V2 表执行连接操作(当然,需要满足一些条件)。如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:过往记忆大数据Shuffle 是昂贵的,尤其是在 Spark 中的连 w397090770 3周前 (01-03) 96℃ 0评论0喜欢
当前 Spark 计算引擎能够利用一些统计信息选择合适的 Join 策略(关于 Spark 支持的 Join 策略可以参见每个 Spark 工程师都应该知道的五种 Join 策略),但是由于各种原因,比如统计信息缺失、统计信息不准确等原因,Spark 给我们选择的 Join 策略不是正确的,这时候我们就可以人为“干涉”,Spark 从 2.2.0 版本开始(参见SPARK-16475),支 w397090770 4年前 (2020-09-15) 3542℃ 0评论3喜欢
《Learning Spark, 2nd Edition》这本书是由 O'Reilly Media 出版社于2020年7月出版的,作者包括 Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop图书介绍第二版已更新包含了 Spark 3.0 的一些东西,本书向数据工程师和数据科学家展示了 Spark 中结构化和统一 w397090770 4年前 (2020-09-03) 2764℃ 0评论10喜欢
物化视图作为一种预计算的优化方式,广泛应用于传统数据库中,如Oracle,MSSQL Server等。随着大数据技术的普及,各类数仓及查询引擎在业务中扮演着越来越重要的数据分析角色,而物化视图作为数据查询的加速器,将极大增强用户在数据分析工作中的使用体验。本文将基于 SparkSQL(2.4.4) + Hive (2.3.6), 介绍物化视图在SparkSQL中 w397090770 5年前 (2020-05-14) 2286℃ 0评论4喜欢
我已经在之前的 《一条 SQL 在 Apache Spark 之旅(上)》、《一条 SQL 在 Apache Spark 之旅(中)》 以及 《一条 SQL 在 Apache Spark 之旅(下)》 这三篇文章中介绍了 SQL 从用户提交到最后执行都经历了哪些过程,感兴趣的同学可以去这三篇文章看看。这篇文章中我们主要来介绍 SQL 查询计划(Query Plan)常见的处理模型(processing model)。数 w397090770 5年前 (2020-05-13) 1782℃ 0评论6喜欢
随着图像分类(image classification)和对象检测(object detection)的深度学习框架的最新进展,开发者对 Apache Spark 中标准图像处理的需求变得越来越大。图像处理和预处理有其特定的挑战 - 比如,图像有不同的格式(例如,jpeg,png等),大小和颜色,并且没有简单的方法来测试正确性。图像数据源通过给我们提供可以编码的标准表 w397090770 6年前 (2018-12-13) 2477℃ 0评论4喜欢
Apache Avro 是一种流行的数据序列化格式。它广泛用于 Apache Spark 和 Apache Hadoop 生态系统,尤其适用于基于 Kafka 的数据管道。从 Apache Spark 2.4 版本开始,Spark 为读取和写入 Avro 数据提供内置支持。新的内置 spark-avro 模块最初来自 Databricks 的开源项目Avro Data Source for Apache Spark。除此之外,它还提供以下功能:新函数 from_avro() 和 to_avro() w397090770 6年前 (2018-12-11) 3182℃ 0评论9喜欢
Apache Spark 2.4 新增了24个内置函数和5个高阶函数,本文将对这29个函数的使用进行介绍。关于 Apache Spark 2.4 的新特性,可以参见 《Apache Spark 2.4 正式发布,重要功能详细介绍》。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop针对数组类型的函数array_distinctarray_distinct(array<T>): array<T w397090770 6年前 (2018-11-25) 7585℃ 0评论18喜欢
Apache Spark 2.4 是在11月08日正式发布的,其带来了很多新的特性具体可以参见这里,本文主要介绍这次为复杂数据类型新引入的内置函数和高阶函数。本次 Spark 发布共引入了29个新的内置函数来处理复杂类型(例如,数组类型),包括高阶函数。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop w397090770 6年前 (2018-11-21) 2500℃ 0评论2喜欢