这篇文章本来19年5月份就想写的,最终拖到今天才整理出来😂。Spark 内置给我们带来了非常丰富的各种优化,这些优化基本可以满足我们日常的需求。但是我们知道,现实场景中会有各种各样的需求,总有一些场景在 Spark 得到的执行计划不是最优的,社区的大佬肯定也知道这个问题,所以从 Spark 1.3.0 开始,Spark 为我们提供 w397090770 4年前 (2020-08-05) 1121℃ 2评论3喜欢
如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop假设我们有以下表:[code lang="scala"]scala> spark.sql("""CREATE TABLE iteblog_test (name STRING, id int) using orc PARTITIONED BY (id)""").show(100)[/code]我们往里面插入一些数据:[code lang="sql"]scala> spark.sql("insert into table iteblog_test select w397090770 4年前 (2020-08-03) 3333℃ 0评论4喜欢
如果你使用 Spark RDD 或者 DataFrame 编写程序,我们可以通过 coalesce 或 repartition 来修改程序的并行度:[code lang="scala"]val data = sc.newAPIHadoopFile(xxx).coalesce(2).map(xxxx)或val data = sc.newAPIHadoopFile(xxx).repartition(2).map(xxxx)val df = spark.read.json("/user/iteblog/json").repartition(4).map(xxxx)val df = spark.read.json("/user/iteblog/json").coalesce(4).map(x w397090770 6年前 (2019-01-24) 8219℃ 0评论12喜欢
随着图像分类(image classification)和对象检测(object detection)的深度学习框架的最新进展,开发者对 Apache Spark 中标准图像处理的需求变得越来越大。图像处理和预处理有其特定的挑战 - 比如,图像有不同的格式(例如,jpeg,png等),大小和颜色,并且没有简单的方法来测试正确性。图像数据源通过给我们提供可以编码的标准表 w397090770 6年前 (2018-12-13) 2472℃ 0评论4喜欢
Apache Avro 是一种流行的数据序列化格式。它广泛用于 Apache Spark 和 Apache Hadoop 生态系统,尤其适用于基于 Kafka 的数据管道。从 Apache Spark 2.4 版本开始,Spark 为读取和写入 Avro 数据提供内置支持。新的内置 spark-avro 模块最初来自 Databricks 的开源项目Avro Data Source for Apache Spark。除此之外,它还提供以下功能:新函数 from_avro() 和 to_avro() w397090770 6年前 (2018-12-11) 3171℃ 0评论9喜欢
Apache Spark 2.4 新增了24个内置函数和5个高阶函数,本文将对这29个函数的使用进行介绍。关于 Apache Spark 2.4 的新特性,可以参见 《Apache Spark 2.4 正式发布,重要功能详细介绍》。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop针对数组类型的函数array_distinctarray_distinct(array<T>): array<T w397090770 6年前 (2018-11-25) 7559℃ 0评论18喜欢
Apache Spark 2.4 是在11月08日正式发布的,其带来了很多新的特性具体可以参见这里,本文主要介绍这次为复杂数据类型新引入的内置函数和高阶函数。本次 Spark 发布共引入了29个新的内置函数来处理复杂类型(例如,数组类型),包括高阶函数。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop w397090770 6年前 (2018-11-21) 2493℃ 0评论2喜欢
美国时间 2018年11月08日 正式发布了。一如既往,为了继续实现 Spark 更快,更轻松,更智能的目标,Spark 2.4 带来了许多新功能,如下:添加一种支持屏障模式(barrier mode)的调度器,以便与基于MPI的程序更好地集成,例如, 分布式深度学习框架;引入了许多内置的高阶函数,以便更容易处理复杂的数据类型(比如数组和 map); w397090770 6年前 (2018-11-10) 4547℃ 0评论6喜欢
Apache Spark 2.4 与昨天正式发布,Apache Spark 2.4 版本是 2.x 系列的第五个版本。 如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoopApache Spark 2.4 为我们带来了众多的主要功能和增强功能,主要如下:新的调度模型(Barrier Scheduling),使用户能够将分布式深度学习训练恰当地嵌入到 Spark 的 stage 中 w397090770 6年前 (2018-11-09) 3358℃ 0评论1喜欢
本文来自于2018年09月19日在 Adobe Systems Inc 举行的 Apache Spark Meetup。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop即将发布的 Apache Spark 2.4 版本是 2.x 系列的第五个版本。 本文对 Apache Spark 2.4 的主要功能和增强功能进行了概述。新的调度模型(Barrier Scheduling),使用户能够将分布式深度学 w397090770 6年前 (2018-09-20) 3298℃ 0评论8喜欢