欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

标签:Spark

Python

Spark1.4中DataFrame功能加强,新增科学和数学函数

Spark1.4中DataFrame功能加强,新增科学和数学函数
  社区在Spark 1.3中开始引入了DataFrames,使得Apache Spark更加容易被使用。受R和Python中的data frames激发,Spark中的DataFrames提供了一些API,这些API在外部看起来像是操作单机的数据一样,而数据科学家对这些API非常地熟悉。统计是日常数据科学的一个重要组成部分。在即将发布的Spark 1.4中改进支持统计函数和数学函数(statistical and mathem

w397090770   10年前 (2015-06-03) 14015℃ 2评论3喜欢

Kafka

Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现

Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现
  Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效。但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这个消费的偏移量发送到Zookeeper中,

w397090770   10年前 (2015-06-02) 25723℃ 36评论22喜欢

Python

使用Spark读写CSV格式文件

使用Spark读写CSV格式文件
  CSV格式的文件也称为逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号。在本文中的CSV格式的数据就不是简单的逗号分割的),其文件以纯文本形式存表格数据(数字和文本)。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符

w397090770   10年前 (2015-06-01) 61264℃ 2评论26喜欢

Kafka

Kafka+Spark Streaming+Redis实时系统实践

Kafka+Spark Streaming+Redis实时系统实践
  基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming、Spark SQL、MLlib、GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑、这也得益于Scala编程语言的简洁性。这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时

w397090770   10年前 (2015-05-30) 37477℃ 2评论76喜欢

Spark

上海第四次Spark meetup会议资料分享

上海第四次Spark meetup会议资料分享
  《Spark meetup(Beijing)资料分享》  《Spark meetup(杭州)PPT资料分享》  《北京第二次Spark meetup会议资料分享》  《北京第三次Spark meetup会议资料分享》  《北京第四次Spark meetup会议资料分享》  《北京第五次Spark meetup会议资料分享》》  《北京第六次Spark meetup会议资料分享》  《杭州第三次Spark meetup会议

w397090770   10年前 (2015-05-29) 5405℃ 0评论3喜欢

Hadoop

如何将MapReduce程序转换为Spark程序

如何将MapReduce程序转换为Spark程序
MapReduce和Spark比较  目前的大数据处理可以分为以下三个类型:  1、复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间;  2、基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间;  3、基于实时数据流的数据处理(streaming data processing),通常的时间

w397090770   10年前 (2015-05-28) 4935℃ 0评论7喜欢

PostgreSQL

Spark SQL整合PostgreSQL

Spark SQL整合PostgreSQL
  本博客的《Spark与Mysql(JdbcRDD)整合开发》和《Spark RDD写入RMDB(Mysql)方法二》文章中介绍了如何通过Spark读写Mysql中的数据。  在生产环境下,很多公司都会使用PostgreSQL数据库,这篇文章将介绍如何通过Spark获取PostgreSQL中的数据。我将使用Spark 1.3中的DataFrame(也就是之前的SchemaRDD),我们可以通过SQLContext加载数据库中的数据,

w397090770   10年前 (2015-05-23) 13030℃ 0评论11喜欢

Spark

Spark自定义分区(Partitioner)

Spark自定义分区(Partitioner)
  我们都知道Spark内部提供了HashPartitioner和RangePartitioner两种分区策略(这两种分区的代码解析可以参见:《Spark分区器HashPartitioner和RangePartitioner代码详解》),这两种分区策略在很多情况下都适合我们的场景。但是有些情况下,Spark内部不能符合咱们的需求,这时候我们就可以自定义分区策略。为此,Spark提供了相应的接口,我们只

w397090770   10年前 (2015-05-21) 18478℃ 0评论20喜欢

Spark

Spark编译错误笔记

Spark编译错误笔记
  最近修改了Spark的一些代码,然后编译Spark出现了以下的异常信息:[code lang="scala"]error file=/iteblog/spark-1.3.1/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scalamessage=File line length exceeds 100 characters line=279error file=/iteblog/spark-1.3.1/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scalamessage=File line length exceeds 100 characters

w397090770   10年前 (2015-05-20) 6096℃ 0评论3喜欢

Spark

不要将大型RDD中所有元素发送到Driver端

不要将大型RDD中所有元素发送到Driver端
  如果你的Driver内存容量不能容纳一个大型RDD里面的所有数据,那么不要做以下操作:[code lang="scala"]val values = iteblogVeryLargeRDD.collect()[/code]  Collect 操作会试图将 RDD 里面的每一条数据复制到Driver上,如果你Driver端的内存无法装下这些数据,这时候会发生内存溢出和崩溃。  相反,你可以调用take或者 takeSample来限制数

w397090770   10年前 (2015-05-20) 3153℃ 0评论4喜欢