我们期待已久的Spark 1.1.0在美国时间的9月11日正式发布了,官方发布的声明如下:We are happy to announce the availability of Spark 1.1.0! Spark 1.1.0 is the second release on the API-compatible 1.X line. It is Spark’s largest release ever, with contributions from 171 developers!This release brings operational and performance improvements in Spark core including a new implementation of the Spark w397090770 11年前 (2014-09-12) 3816℃ 0评论2喜欢
Spark SQL也是可以直接部署在当前的Hive wareHouse。 Spark SQL 1.1.0的 Thrift JDBC server 被设计成兼容当前的Hive数据仓库。你不需要修改你的Hive元数据,或者是改变表的数据存放目录以及分区。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop 以下列出来的是当前Spark SQL(1.1.0)对Hive特性的 w397090770 11年前 (2014-09-11) 9453℃ 1评论8喜欢
Spark 1.1.0马上就要发布了(估计就是明天),其中更新了很多功能。其中对Spark SQL进行了增强: 1、Spark 1.0是第一个预览版本( 1.0 was the first “preview” release); 2、Spark 1.1 将支持Shark更新(1.1 provides upgrade path for Shark), (1)、Replaced Shark in our benchmarks with 2-3X perfgains; (2)、Can perform optimizations with 10- w397090770 11年前 (2014-09-11) 7799℃ 2评论5喜欢
如果你需要将RDD写入到Mysql等关系型数据库,请参见《Spark RDD写入RMDB(Mysql)方法二》和《Spark将计算结果写入到Mysql中》文章。 Spark的功能是非常强大,在本博客的文章中,我们讨论了《Spark和Hbase整合》、《Spark和Flume-ng整合》以及《和Hive的整合》。今天我们的主题是聊聊Spark和Mysql的组合开发。如果想及时了解Spark、Had w397090770 11年前 (2014-09-10) 38795℃ 7评论32喜欢
《Spark meetup(Beijing)资料分享》 《Spark meetup(杭州)PPT资料分享》 《北京第二次Spark meetup会议资料分享》 《北京第三次Spark meetup会议资料分享》 《北京第四次Spark meetup会议资料分享》 《北京第五次Spark meetup会议资料分享》》 《北京第六次Spark meetup会议资料分享》如果想及时了解Spark、Hadoop或 w397090770 11年前 (2014-09-08) 18459℃ 177评论16喜欢
本文详细地介绍了如何将Hadoop上的Mapreduce程序转换成Spark的应用程序。有兴趣的可以参考一下:The key to getting the most out of Spark is to understand the differences between its RDD API and the original Mapper and Reducer API.Venerable MapReduce has been Apache Hadoop‘s work-horse computation paradigm since its inception. It is ideal for the kinds of work for which Hadoop was originally des w397090770 11年前 (2014-09-07) 6460℃ 1评论9喜欢
《Spark meetup(Beijing)资料分享》 《Spark meetup(杭州)PPT资料分享》 《北京第二次Spark meetup会议资料分享》 《北京第三次Spark meetup会议资料分享》 《北京第四次Spark meetup会议资料分享》 《北京第五次Spark meetup会议资料分享》》 《北京第六次Spark meetup会议资料分享》 8月31日(13:30-17:30),杭州第 w397090770 11年前 (2014-09-01) 26717℃ 230评论17喜欢
《Spark meetup(Beijing)资料分享》 《Spark meetup(杭州)PPT资料分享》 《北京第二次Spark meetup会议资料分享》 《北京第三次Spark meetup会议资料分享》 《北京第四次Spark meetup会议资料分享》 《北京第五次Spark meetup会议资料分享》》 《北京第六次Spark meetup会议资料分享》 下面是Spark meetup(Beijing)第 w397090770 11年前 (2014-08-29) 24145℃ 204评论16喜欢
Spark SQL也公布了很久,今天写了个程序来看下Spark SQL、Spark Hive以及直接用Hive执行的效率进行了对比。以上测试都是跑在YARN上。 首先我们来看看我的环境: 3台DataNode,2台NameNode,每台机器20G内存,24核 数据都是lzo格式的,共336个文件,338.6 G 无其他任务执行如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关 w397090770 11年前 (2014-08-13) 50099℃ 9评论51喜欢
以下文章是转载自国外网站,介绍了Hadoop生态系统上面的几种SQL:Hive、Drill、Impala、Presto以及Spark\Shark等应用场景、对比以及一些结论Within the big data landscape there are multiple approaches to accessing, analyzing, and manipulating data in Hadoop. Each depends on key considerations such as latency, ANSI SQL completeness (and the ability to tolerate machine-generated SQL), developer and a w397090770 11年前 (2014-08-11) 9970℃ 0评论14喜欢